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1) Chapter One

Basic Assembly L anguage Programming Concepts

This chapter reviews some of the key concepts that must be mastered prior to learning to program a
computer in assembly language. These concepts include the use of the binary and hexadecimal number
systems; boolean logic; how memory is addressed as bytes of data; how characters are represented as ASCI |
codes; binary-coded decimal (BCD) number systems, and more. The meaning of these termsis explained in
this chapter. Also discussed is the use of an assembler, which is a program used to write machine-language
programs, and programming techniques like selection, loops, and subr outines.

Since the primary purpose of this book is to introduce you to programming the 65816 and the other members of
the 65x family, this single chapter can only be a survey of thisinformation rather than a complete guide.

Binary Numbers

In its normal, everyday work, most of the world uses the decimal, or base ten, number system, and
everyone takes for granted that this system is the “natura” (or even the only) way to express the concept of
numbers. Each place in adecimal number stands for a power of ten: ten to the O power is 1, ten to the 1% power
is ten, ten to the 2™ power is 100, and so on. Thus, starting from a whole number’s right-most digit and
working your way left, the first digit is multiplied by the zero power of ten, the second by the first power of ten,
and so on. The right-most digits are called the low-order or least significant digits in a positional notation
system such as this, because they contribute least to the total magnitude of the number; conversely, the leftmost
digits are called the high-order or most significant digits, because they add the most weight to the value of the
number. Such asystem is called a positional notation system because the position of a digit within a string of
numbers determines its value.

Presumably, it was convenient and natural for early humans to count in multiples of ten because they
had ten fingers to count with. But it is rather inconvenient for digital computers to count in decimal; they have
the equivalent of only one finger, since the representation of numbers in a computer is simply the reflection of
electrical charges, which are either on or off in a given circuit. The all or nothing nature of digita circuitry
lends itself to the use of the binary, or base two, system of numbers, with one represented by “on” and zero
represented by “off”. A oneor azero in binary arithmetic is called a binary digit, or a bit for short.

Like base ten digits, base two digits can be strung together to represent numbers larger than a single
digit can represent, using the same technique of positional notation described for base ten numbers above. In
this case, each binary digit is such a base two number represents a power of two, with a whole number’s right-
most bit representing two to the zero power (ones), the next bit representing two to the first power (twos), the
next representing two to the second power (fours), and so on (Figure 1-1 Binary Representation)

12



The Western Design Center

Grouping Bitsinto Bytes

As explained, if the value of abinary digit, or bit, isaone, it is stored in a computer’ s memory by
switching to an “on” or charged state, in which case the bit is described as being set; if the value of agiven bit is
azero, it is marked in memory by switching to an “off” state, and the bit is said to be reset.

While memory may be filled with thousands or even millions of bits, a microprocessor must be able to
deal with them in aworkable size.

§ 8 8 8 & & o g
%0 __U) __U) __U)

~ g a © __U) __U) __U) __U)
— ™ — [e] < N —
0 1 1 0 0 1 1 0

32
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Figure 1-1 Binary Representation

The smallest memory location that can be individually referenced, or addressed, is usually, and always
in the case of the 65x processors, a group of eight bits. This basic eight-bit unit of memory is known as a byte.
Different types of processors can operate on different numbers of bits a any given time, with most
microprocessors handling one, two, or four bytes of memory in a single operation. The 6502 and 65C02
processors can handle only eight bits at atime. The 65816 and 65802 can process either eight or sixteen bits at
atime.

Memory is organized as adjacent, non-overlapping bytes, each of which has its own specific address.
An address is the unique, sequential identifying number used to reference the byte at a particular location.
Addresses start at zero and continue in ascending numeric order up to the highest addressable location.

As stated, the 65802 and 65816 can optionally manipulate two adjacent bytes at the same time; a
sixteen-bit data item stored in two contiguous bytes is called a double byte in this book. A more common but
misleading usage is to describe a sixteen-bit value as a word; the term word is more properly used to describe
the number of bits a processor fetches in a single operation, which may be eight, sixteen, thirty-two, or some
other number of bits depending on the type of processor.

It turns out that bytes — multiples of eight bits — are conveniently sized storage units for programming
microprocessors. For example, a single byte can readily store enough information to uniquely represent all of
the characters in the norma computer character set. An eight-bit binary value can be easily converted to two
hexadecimal (base sixteen) digits; this fact provides a useful intermediate notation between the binary and
decimal number systems. A double byte can represent the entire range of memory addressable by the 6502,
65C02, and 65802, and one complete bank — 64K bytes — on the 65816. Once you' ve adjusted to it, you'll find
that there is a consistent logic behind the organization of a computer’s memory into eight-bit bytes.

Since the byte is one of the standard units of a computer system, a good question to ask at this point
would be just how large a decimal number can you store in eight bits? The answer is 255. The largest binary
number you can store in a given number of bitsis the number represented by that many one-bits. In the case of
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the byte, thisis 11111111, or 255 decimal (or 2° - 1). Larger numbers are formed by storing longer bit-strings
in consecutive bytes.

The size of a computer’s memory istypically expressed in bytes, which makes sense because the byteis
the smallest addressable unit. And since a byte is required to store the representation of a single a phanumeric
character, you can get an easy visualization of about how much storage 64K of memory is by thinking of that
many characters. The K stands for one thousand (from the Greek kilo meaning thousand, as in kilogram or
kilometer); however, since powers of two are always much more relevant when discussing computer memories,
the symbol K in this context actually stands for 1024 bytes, the nearest power-of-two approximation of 1000, so
64K is 65,536 bytes, 128K is 131,072 bytes, and so on. Within a given byte (or double byte) it is often
necessary to refer to specific bits within the word. Bits are referred to by number. The low-order, or right-most
bit, is called bit zero; this corresponds to the one’s place. The next-higher-order bit is bit one, and so on. The
high-order bit of a byte is therefore bit seven; of a double byte, bit fifteen. The convention of calling the lower-
order bit the “right-most” is consistent with the convention used in decimal positional notation; normal decimal
numbers are read from left to right, from high-order to low-order. Figure 1.2 illustrates the bit numbers for
bytes and double bytes, as well as the relative weights of each bit position.

A
— I
Double-Byte AL
r Byte N
51413121110} 9 (8| 7| 6 | 5(4|3]|]2]|1|O0
High-Order Low-Order

Figure 1-2 Bit Numbers
Hexadecimal Representation of Binary

While binary is a convenient number system for computers to use, it is somewhat difficult to trandate a
series of ones and zeros into a number that is meaningful. Any number that can be represented by eight binary
bits can also be represented by two hexadecimal (or hex for short) digits. Hexadecimal numbers are base
sixteen numbers. Since base two uses the digits zero through one, and base ten the digits zero through nine,
clearly base sixteen must use digits standing for the numbers zero through fifteen. Table 1.1 is a chart of the
sixteen possible four-bit numbers, with their respective decimal and hexadecimal representations.
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Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Table 1-1 Decimal and Hex Numbers

Because the positional notation convention reserves only asingle place for each multiplier of the power of that base, the
numbers ten through fifteen must be represented by a single base-sixteen digit. Rather than create entirely new symbols for
digits, the first six letters of the alphabet were chosen to represent the numbers ten through fifteen. Each of the sixteen hex
digits corresponds to one of the possible combinations of four binary digits.

Binary numbers larger than 1111 are converted to hexadecimal by first separating the bits into groups of
fur, starting from the right-most digit and moving left. Each group of four bits is converted into its
corresponding hex equivalent. It is generally easier to work with a hexadecimal number like FO93B than its
binary counterpart 111100100111011. Hexadecima numbers are often used by machine language
programming tools such as assemblers, monitors, and debuggers to represent memory addresses and their
contents. The value of hexadecimal numbers is the ease with which they can be converted to and from their
binary equivalents once the table has been memorized.

While a hexadecimal 3 and a decimal 3 stand for the same number, a hexadecimal 23 represents two
decimal sixteen’s plus 3, or 35 decimal. To distinguish a multiple-digit hex number from a decimal one, either
the word hexadecimal should precede or follow it, or a‘$ should prefix it, asin $23 for decimal 35, or $FF to
represent 255. A number without any indication of base is presumed to be decimal. An aternative notation for
hexadecimal numbers is to use the letter H as a suffix to the number (for example, FFH); however, the dollar-
sign prefix is generally used by assemblers for the 65x processors.

The ASCI|I

Characters — letters, numbers, and punctuation — are stored in the computer as number values, and
trandated to and from readable form on input or output by hardware such as keyboards, printers, and CRTSs.
There are 26 English-language lower-case letters, another 26 upper-case ones, and a score or so of special
characters, plus the ten numeric digits, any of which might be typed from a keyboard or displayed on a screen or
printer, as well as stored or manipulated internally. Further, additional codes may be needed to tell aterminal or
printer to perform a given function, such as cursor or print head positioning. These control codes including
carriage return, which returns the cursor or print head to the beginning of a line; line feed, which moves the
cursor or print head down aline; bell, which rings a bell; and back space, which moves the cursor or print head
back one character.

The American Standard Code for Information Interchange abbreviated ASCI| and pronounced AS
key, was designed to provide a common representation of characters for all computers. An ASCII code is
stored in the low-order seven bits of a byte; the most significant bit is conventionally a zero, although a system
can be designed either to expect it to be set or to ignore it. Seven bits allow the ASCII set to provide 128
different character codes, one for each English letter and number, most punctuation marks, the most commonly
use mathematical symbols, and 32 control codes.

15



The Western Design Center

The use of different bit values, or numbers, to store character codes, is entirely analogous to the
“decoder ring” type of cipher: theletter ‘A’ isone, ‘B’ istwo, and so on; but in the case of the ASCII character
set, the numbers assigned to the letters of the alphabet are different, and there are different codes for upper- and
lower-case |etters.

There is an ASCII chart in Appendix F of this book. Notice that since the decimal digits O through 9
are represented by $30 to $39, they can be easily converted between their binary representations and their actual
values by the addition or subtraction of $30. The letters are arranged in aphabetical order, the capital letters
from A through Z represented by $41 through $5A and the lower-case letters from a through z represented by
$61 through $7A. This dlows letters to be placed in aphabetical order by numerically sorting their ASCII
values, and characters to be converted between upper- and lower-case by the addition or subtraction of $20.
Finally, notice that the control characters from Ctrl-@ and Ctrl-A through Ctrl-Z and on to Ctrl-_ run from zero
to $1F and alow easy conversion between the control characters and the equivalent printing characters by the
addition or subtraction of $40.

To print a character on an output device, you must send it the ASCII value of the character: to print an
‘A’, you must send $41 to the screen, not $A, which isthe ASCII code for aline feed; and to print an’8’, you
must send $38, not $8, which isthe ASCII code for a backspace. The space character, too, has and ASCI| code:
$20.

Since any memory value — take $41 for example — could represent either an ASCII code (for ‘A’ in this
case) or a number (decimal 65), the interpretation of the data is defined by the code of the program itself and
how it treats each piece of data it uses within a give context.

Boolean Logic

Logical operations interpret the binary on/off states of a computer's memory as the values true and
false rather than the numbers one and zero. Since the computer handles data one or two bytes at a time, each
logical operation actually manipulates a set of bits, each with its own position.

Logica operations manipulate binary “flags’. There are three logical operations that are supported by
65x microprocessor instructions, each combining two operands to yield a logical (true or false) result: and, or,
and exclusive or.

Logical And

The AND operator yields true only if both of the operands are themselves true; otherwise, it yields
false. Remember, trueis equivalent to one, and false equivalent to zero. Within the 65x processors, two strings
of eight, or in the case of the 65816, eight or sixteen, individual logical values may be ANDed, generating a
third string of bits; each bit in the third set is the result of ANDing the respective bit in each of the first two
operands. Asaresult, the operation is called bitwise.

When considering bitwise logical operations, it is norma to use binary representation. When
considered as a numeric operation on two binary numbers, the result given in Figure 1.3 makes little sense. By
examining each bit of the result, however, you will see that each has been determined by ANDing the two
corresponding operand bits.

11011010 $DA
AND 01000110 $45
equals 01000010 $42

Figure 1-3 ANDing Bits
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A truth table can be drawn for two-operand logical operations. Y ou find the result of ANDing two bits
by finding the setting of one bit on the left and following across until you're under the setting of the other hit.
Table 1.2 shows the truth table for AND.

Second Operand
0 1
First Operand
0 0 0
1 0 1
Table1-2 Truth Tablefor AND
Logical Or

The OR operator yields a one or true value if either (or both) of the operandsistrue. Taking the same
values as before, examine the result of the logical OR operation in Figure 1.4. The truth table for the OR
function is shown in Table 1.3.

11011010 $DA
OR 01000110 $45
equals 11011110 $DE

Figure 1-4 ORing Bits
Logical Exclusive Or

The exclusive OR operator is similar to the previoudy-described OR operation; in this case, the result
is true only if one or the other of the operands is true, but not if both are true or (as with OR) neither is true.
That is, the result is true only if the operands are different, as Figure 1.5 illustrates using the same values as
before. Thetruth table for exclusive OR is shown in Table 1.4.

Second Operand

0 1
First Operand
0 0 1
1 1 1
Table 1-3 Truth Tablefor OR
11011010 $DA
EOR 01000110 $45
equals 10011100 $9C
Figure 1-5 EXCLUSIVE ORing Bits
Second Operand
0 1
First Operand
0 0 1
1 1 0

Table 1-4 Truth Table for EXCLUSIVE OR
Logical Complement

AsFigure 1.6 shows, the logical complement of avalueisitsinverse: the complement of true is false,
and the complement of falseistrue.

17



The Western Design Center

11011010 $DA

COMPLEMENTED

equals 00100101 $25
Figure 1-6 COMPLEMENTIing Bits

While the 65x processors have no complement or not function built in, exclusve ORing avalue with a
string of ones ($FF or $FFFF) produces the complement, as Figure 1.7 illustrates.

11011010 $DA
EOR 11111111 $FF
equals Complement 00100101 $25

Figure 1-7 COMPLEMENTIng Bits Using Exclusive OR

Since complement has only one operand, its truth table, drawn in Table 1.5, is ssimpler than the other
truth tables.

operand result
0 1
1 0

Table 1-5 Truth Tablefor COMPLEMENT
Signed Numbers

Many programs need nothing more than the whole numbers already discussed. But others need to store
and perform arithmetic on both positive and negative numbers.

Of the possible systems for representing signed numbers, most microprocessors, among them those in
the 65x family, use two’'s complement. Using two’s-complement form, positive numbers are distinguished
from negative ones by the most significant bit of the number: a zero means the number is positive; a one means
itis negative.

To negate a number in the two’s-complement system, you first complement each of its bits, then add
one. For example, to negate one (to turn plus-one into minus-one):

00000001 To negate +1,
11111110 complement each bit
+1 and add one.

11111111 Theresultis— 1.

So $FF if the two’s-complement representation of minus-one. When converting to two's complement
by hand, an easier technique than the two-step process is to copy zeroes from the right (least significant bit)
until the first one is reached; copy that one, and then change every zero to a one and every one to a zero as you
continue to the left. Try it on the example above.

Now, instead of using eight bits to represent the integers from zero to 255, two's-complement
arithmetic uses eight bits to represent signed numbers from —128 ($80) to + 127 ($7F), as Table 1.6 shows.
There is always one more negative than positive number in atwo’ s-complement system.
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Decimal Hexadecimal Binary
+127 $7F 01111111
+126 $7E 01111110
+125 $7D 01111101

+1 1 0000 0001

0 0 0000 0000

-1 $FF 11111111
2 $FE 11111110
-3 $FD 11111101
-126 $82 1000 0010
-127 $81 1000 0001
-128 $80 1000 0000

Table 1-6 The Eight-Bit Range of Two's-Complement Numbers

Another practical way to think of negative two’'s-complement numbers is to think of negative numbers
as the (unsigned) value that must be added to the corresponding positive number to produce zero as the result.
For example, in an eight-bit number system, the value that must be added to one to produce zero (disregarding
the carry) is $FF; 1+$FF=$100, or 0 if only the low-order eight bits is considered. $FF must therefore be the
two’ s-complement value for minus one.

The introduction of two’s-complement notation creates yet another possibility in interpreting the data
stored at an arbitrary memory location. Since $FF could represent either the unsigned number 255 or the
negative integer minus-one, it's important to remember that it is only the way in which a program interprets the
data stored in memory that givesit its proper value — signed or unsigned.

Storing Numbersin Decimal Form

Computers use numbers in binary form most efficiently. But when a program calls for decimal
numbers to be entered or output frequently, storing numbersin their decimal form — rather than converting them
to binary and back — may be preferable. Further, converting floating-point decimal numbers to a binary
floating-point form and back can introduce errors. for example, 8 minus 2.1 could result in 5.90000001 rather
than the correct answer, 5.9.

As a result, some programs, such as accounting applications, store numbers in decimal form, each
decimal digit represented by four bits, yielding two decimals digits per byte, as Table 1.7 shows. This form is
called binary-coded decimal BCD lies somewhere between the machine's native binary and abstractions such
asthe ASCI| character codes for numbers.

Since four bits can represent the decimal numbers from zero to fifteen, using the same number of bits to
represent only the numbers from zero through nine wastes six combinations of the binary digits. This less than
optimal use of storage is the price of decimal accuracy and convenience.
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Binary Hexadecimal Decimal BCD
0000 0000 0 0 0000 0000
0000 0001 1 1 0000 0001
0000 0010 2 2 0000 0010
0000 0011 3 3 0000 0011
0000 0100 4 4 0000 0100
0000 0101 5 5 0000 0101
0000 0110 6 6 0000 0110
0000 0111 7 7 0000 0111
0000 1000 8 8 0000 1000
0000 1001 9 9 0000 1001
0000 1010 A 10 0001 0000
0000 1011 B 1 0001 0001
0000 1100 c 12 0001 0010
0000 1101 D 13 0001 0011
0000 1110 E 14 0001 0100
0000 1111 F 15 0001 0101

Table1-7 The First 16 BCD Numbers

The 65x processors have a special decimal mode which can be set by the programmer. When decimal
mode is set, numbers are added and subtracted with the assumption that they are BCD numbers: in BCD mode,
for example, 1001+1 (9+1) yields the BCD results of 0001 0000 rather than the binary result of 1010 (1010 has
no meaning in the context of BCD number representation).

Obvioudly, in different context 0001 0000 could represent either 10 decimal or $10 hexadecimal (16
decimal); in this case, the interpretation is dependent on whether the processor isin decima mode or not.

Computer Arithmetic

Binary arithmetic is just like decimal arithmetic, except that the highest digit isn't nine, it'sone. Thus
1+0=1, while 1+1=0 with a carry of 1, or binary 10. Binary of 10 is equivalent of a decima 2. And 1-0=1,
while during the subtraction of binary 1 from binary 10, the 1 can’'t be subtracted from the O, so a borrow is
done, getting the 1 from the next position (leaving it 0); thus, 10-1=1.

Addition and subtraction are generally performed in one or more main processor registers, called
accumulators. On the 65x processors, they can store either one or, optionally on the 65802 and 65816, two
bytes. When two numbers are added that cause a carry from the highest bit in the accumulator, the result is
larger than the accumulator can hold. To account for this, there is a special one-bit location, called a carry bit,
which holds the carry out of the high bit from an addition. Very large numbers can be added by adding the low-
order eight or sixteen bits (whichever the accumulator holds) of the numbers, and then adding the next set of bit
plus the carry from the previous addition, and so on. Figure 1.8 illustrates this concept of multiple-precision
arithmetic.

Microprocessor Programming

You have seen how various kinds of data are represented and, in general, how this data can be
manipulated. To make those operations take place, a programmer must instruct the computer on the steps it
must take to get the data, the operations to perform on it, and finally the steps to deliver the results in the
appropriate manner. Just as a record player is useless without a record to play, so a computer is useless without
aprogram to execute.

Machine Language

The microprocessor itself speaks only one language, its machine language, which inevitably is just
another form of binary data. Each chip design has its own set of machine language instructions, called its
instruction set, which defines the function that it can understand and execute. Whether you program in
machine language, in its corresponding assembly language, or in a higher level language like BASIC or Pascal,
the instructions that the microprocessor ultimately executes are aways machine language instructions.
Programs in assembly and higher-level languages are trandated (by assemblers, compilers and interpreters) to
machine language before the processor can execute them.

20



The Western Design Center

Each machine language instruction in the 65x series of microprocessors is one to four bytes long. The
first byte of each instruction is called the operation code (opcode for short); it specifies the operation the
computer is to do. Any additional bytes in the instruction make up the operand, typically all or part of an
address to be accessed, or avalue to be processed.

[0 fo |t [t [t [o Jo [o | [t [0 Jo [o [o Jo |t [t |
$83
[t [o |+ [o o J* o Jt | [t o |t Jo Jo |t [O |t |
Plus$A5 Plus $A5
PLUS CARRY 1 |4
1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0
Equal $DE Equals
$28
Cary =1

$3883 Plus $A5A5 Equals $DE28

Figure 1-8 Multiple-Precision Arithmetic
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Assembly Language

Writing long strings of hexadecimal or binary instructions to program a computer is obviously not
something you would want to do if you could at al avoid it. The 65816's 256 different opcodes, for example,
would be difficult to remember in hexadecimal form — and even harder in binary form. Assembly language,
and programs which trandlate assembly language to machine code (called assembler s) were devised to simplify
the task of machine programming.

Assembly language substitutes a short word — known as a mnemonic (which means memory aid) — for
each binary machine code instruction. So while the machine code instruction 1010 1010, which instructs the
65x processor to transfer the contents of the A accumulator to the X index register, may be hard to remember,
its assembler mnemonic TAX (for “Transfer A to X”) is much easier.

The entire set of 65x opcodes are covered aphabetically by mnemonic label in Chapter Eighteen, while
Chapter Five through Thirteen discuss them in functional groups, introducing each of them, and providing
examples of their use.

To write an assembly language program, you first use a text editing program to create a file containing
the series of instruction mnemonics and operands that comprise it; this is called the source program, source
code or just source. You then use this as the input to the assembler program, which trandates the assembler
statements into machine code, storing the generated code in an output file. The machine code is either in the
form of executable object code, which is ready to be executed by the computer, or (using some development
systems), a relocatable object module, which can be linked together with other assembled object modules
before execution.

If this were all that assembly language provided, it would be enough to make machine programming
practical. But just as the assembler lets you substitute instruction mnemonics for binary operation codes, it lets
you use names for the memory locations specified in operands so you don’t have to remember or compute their
addresses. By naming routines, instructions which transfer control to them can be coded without having to
know their addresses. By naming constant data, the value of each constant is stated only in one place, the place
where it is named. If a program modification requires you to change the values of the constants, changing the
definition of the constant in that one place changes the value wherever the name has been used in the program.
These symbolic names given to routines and data are known as labels.

As your source program changes during development, the assembler will resolve each label reference
anew each time an assembly is performed, allowing code insertions and deletions to be made. If you hard-
coded the addresses yourself, you would have to recalculate them by hand each time you inserted or deleted a
line of code.

The use of an assembler aso lets you comment your program within the source file — that is, to explain
in English what it is you intend the adjacent assembly statements to do and accomplish.

More sophisticated macr o assemblers take symbol manipulation even further, allowing special labels,
called macro instructions (or just macros for short), to be assigned to a whole series of instructions. Macro is
a Greek word meaning long, so a macro instruction isa“long” instruction. Macros usually represent a series of
instructions which will appear in the code frequently with dight variations. When you need the series, you can
type in just the macro name, as though it were an instruction mnemonic; the assembler automatically “expand”
the macro instruction to the previously-defined string of instructions. Slight variations in the expansion are
provided for by a mechanism that allows macro instructions to have operands.

Writing in Assembly L anguage

In addition to understanding the processor you’ re working with, you must also have a good knowledge
of the particular assembler you are using to program in assembly language. While the specific opcodes used are
carved in the silicon die of the processor itself, the mnemonics for those opcodes are simple conventions and
may vary dlightly from one assembler to another (although the mnemonics proposed by a processor's
manufacturer will tend to be seen as the standard). Varying even more widely are assembler directives —
assembler options which can be specified in the midst of code. These options tell the assembler such things as
where to locate the program in memory, which portions of the source listing to print, or what labels to assign to
constants.
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Nevertheless, most microcomputer assemblers have a great deal in common. They generally provide
four columns, or fields, for different types of information about an operation: a label which can be used to
symbolicaly identify the location of the code; the opcode; the operand; and space for comments. Figure 1.9
illustrates some typical assembler source code, with the different fields highlighted.

While an opcode or directive appears in every assembler statement, the operand field may or may not be
required by any particular opcode, since there are several one-byte instructions which consist solely of an
opcode. The label and comment field are optional, added to make the program easier to read, write, debug, and
modify later.

During assembly, the assembler checks the fields to be sure the information there is complete, of the
proper type, and not out of order, and issues error messages to warn you problems. It also checks to be sure you
have not tried to define the same label twice, and that you have not used a label you did not define.

Basic Programming Concepts

There are several concepts which, in general terms, characterize the different ways a program can
execute.

The most obvious concept is that of straight-line execution: aprogram starts in low memory and steps
afew bytes higher into memory with execution of each new instruction until it reaches the end, never doubling
back or jumping forward. Straight-line execution is clean and clear: it begins at the beginning, executes every
instruction in the program once, and ends at the end. This type of execution is the default execution mode. The
65x processors have register called the program counter, which is automatically updated at the end of each
instruction so that it contains the address of the next instruction to be executed.

Label Opcode Operand Comment
Fied Fied Field Field

REP #$10
LONGI ON
SEP #$20
LONGA  OFF
LDY #0

LOOP LDA 1,9,y get character from first string
BEQ PASS if zero, end of string: match
CMP (3,9).Y compare to corresponding char in 2™ string
BNE FAIL braif not equal; probably failure
INY else do not pair
BRA LOOP

matches shortest string

PASS PLP they match up to shortest string;
CLC restore status, but clear carry
BRA EXIT

FAIL LDA (3,9).,Y was last failure due to end of string2?
BEQ PASS yes, let it pass
PLP restore status, but set carry (no match)
SEC

Figure 1-9 Typical Assembler Source Code
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Selection Between Paths

Real-life problems — the kind you want to write computer programs to solve — are seldom straight and
simple. A computer would be very limited with only straight-line execution capability, that is, if it could not
make choices between different courses of action based on the conditions that exist while it is executing.
Selection between paths provides computers with their decision-making capabilities. The 65x microprocessors
carry out selection between paths by means of conditional branch instructions.

An example of selection between paths would be a tic-tac-toe program. Playing second, the program
must choose where to place its first token from eight different squares. If the opponent has taken the center
square, the program must respond differently than if a side square were taken.

Execution still begins at the beginning and ends at the end, in a single pass through the code, but whole
groups of instructions on paths not taken are not executed.

Looping

Let's say you write a program to convert a Fahrenheit temperature to Celsius. If you had only one
temperature to convert, you wouldn’'t spend the time writing a program. What you want the program to do is
prompt for a Fahrenheit temperature, convert it to Celsius, print out the result, then loop back and prompt for
another Fahrenheit temperature, and so on — until you run out of temperatures to convert. This program uses a
program concept called looping or iteration, which is smply the idea that the same code can be reexecuted
repeatedly — with different values for key variables — until a given exit condition. In this case the exit condition
might be the entry of a null or empty input string.

Often, it’s not the whole program that loops, but just a portion of it. While a poker program could deal
out 20 cards, one at atime, to four players, it would use much less program memory to deal out one card to each
of the players, then loop back to do the same thing over again four more times, before going on to take bets and
play the poker hands dealt.

Looping saves writing repetitive code over and over again, which is both tedious and uses up memory.
The 65x microprocessors execute loops by means of branch and jump instructions.

Looping amost always uses the principle of selection between paths to handle exiting the loop. In the
poker program, after each set of four cards has been dedlt to the four players, the program must decide if that
was the fifth set of four cards or if there are more to deal. Four times it will select to loop back and deal another
set; the fifth time, it will select another path — to break out of the loop to begin prompting for bets.

Subroutines

Even with loops, programmers could find themselves writing the same section of code over and over
when it appears in a program not in quick succession but rather recurring at irregular intervals throughout the
program. The solution is to make the section of code a subroutine, which the program can call as many times
and from as many locations as it needs to by means of a jump-to-subroutine instruction. The program, on
encountering the subroutine call, makes note of its current location for purposes of returning to it, then jumps to
the beginning of the subroutine code. At the end of the subroutine code, aretur n-from-subroutine instruction
tells the program to return from the subroutine to the instruction after the subroutine call. There are several
different types of calls and returns available on the different 65x processors; all of them have a basic call and
return instruction in common.

Programmers often build up large libraries of general subroutines that multiply, divide, output
messages, send bytes to and receive bytes from a communications line, output binary numbersin ASCII,
trand ate numbers from keyboard ASCII into binary, and so on. Then when one of these subroutines is needed,
the programmer can get a copy from the library or include the entire library as part of his program.
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2) Chapter Two

Architecture of the 6502

This chapter, and the two which follow, provide overviews of the architecture of the four 65x family
processors: the 6502, the 65C02, and the 65802/65816. Each chapter discusses the register set and the function
of the individual registers, the memory model, the addressing modes, and the kinds of operations available for
each respective processor. Because each successive processor is a superset of the previous one, each of the next
two chapters will build on the material already covered. Much of what is discussed in this chapter will not be
repeated in the next two chapters because it is true of all 65x processors. As the original 65x machine, the 6502
architecture is particularly fundamental, since it describes a great number of common architectural features.

Microprocessor Architecture

The number, kinds, and sizes of registers, and the types of operations available using them, defines the
architecture of a processor. This architecture determines the way in which programming problems will be
solved. An approach which is simple and straightforward on one processor may become clumsy and inefficient
on ancther if the architectures are radically different.

A register is a special memory location within the processor itself, where intermediate results,
addresses, and other information which must be accessed quickly are stored. Since the registers are within the
processor itself, they can be accessed and manipulated much faster than external memory. Some instructions
perform operations on only a single bit within a register; others on two registers at once; and others move data
between a register within the processor and externa memory. (Although the registers are indeed a special kind
of memory, the term memory will be used only to refer to the addressable memory external to the
Mi Croprocessor registers.)

The 6502 is not a register-oriented machine. As you will see, it has a comparatively small set of
registers, each dedicated to a specia purpose. The 6502 instead relies on its large number of addressing modes,
particularly its direct-page indirect addressing modes, to give it power.

An addressing mode is a method, which may incorporate severa intermediate calculations involving
index registers, offset, and base addresses, for generating an instruction’s effective address — the memory
address at which data is read or written. Many 6502 instructions, such as those for addition, have many
alternate forms, each specifying a different addressing mode. The selection of the addressing mode by you, the
programmer, determines the way in which the effective address will be cal culated.

There are three aspects to learning how to program the 6502 or any processor. Learning the different
addressing modes available and how to use them is a big part. Learning the available instructions and
operations, such as addition, subtraction, branching, and comparing, is another. But to make sense of either,
you must begin by understanding what each of the different registers is and does, and how the memory is
organized.

If you compare the different processors in the 65x family — the eight-bit 6502 and 65C02 and the
sixteen-bit 65816 and 65802 — you will find they all have a basic set of registers and a basic set of addressing
modes in common: the 6502's.

The 6502 Registers

The 6502 registers are:

- The accumulator, or A register, is the primary user register and generally holds one of the operands, as well
asthe result, of any of the basic data-manipulation instructions.
The X and Y index registers are used chiefly in forming effective addresses for memory accesses and as loop
counters.
The processor status, or P, register contains hit-fields to indicate various conditions, modes, and results
within the processor.
The stack pointer, or Sregister, is a pointer to the next available location on the system stack, a special area
of memory for temporary data storage. In addition to being available to the user, the stack pointer and stack
are also used automatically every time a subroutine is called or an interrupt occurs to store return information.
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Finally, the program counter, or PC, is a pointer to the memory location of the instruction to be executed
next.

These six basic 6502 registers are depicted in the programmer model diagrammed in Figure 2.1.
Notice that, with the exception of the program counter (PC), all of them are eight-bit registers. Because they
can contain only eight bits, or one byte, of data at atime, they can only perform operations, such as addition, on
one byte at atime. Hence the 6502 is characterized as an “eight-bit” processor.

Although the user registers of the 6502 are only eight bits wide, all of the external addresses generated
are sixteen bits. This gives the 6502 an address space of 64K (2'°=65,536). In order to access data located
anywhere in that 64K space with an eight bit processor, one instruction operand in calculating effective
addresses is amost always found in memory — either in the code itself following an instruction, or at a specified
memory location — rather than in aregister, because operands in memory have no such limits. All that is needed
to make a memory operand sixteen bits are two adjacent memory locations to put them in.

To alow programs longer than 256 bytes, the program counter, which always points to the location of
the next instruction to be executed, is necessarily sixteen bits, or two bytes, wide. You may therefore locate a
6502 program anywhere within its 64K address space.

Now each of the 6502 registers will be described in more detail.

The Accumulator

The accumulator (A) is the primary register in the 65x processor. Almost al arithmetic and most local
operations are performed on the data in the accumulator, with the result of the operation being stored in the
accumulator. For example to add two numbers which are stored in memory, you must first load one of them
into the accumulator. Then you add the other to it and the result is automatically stored in the accumulator,
replacing the value previously loaded there.

Because the accumulator is the primary user register, there are more addressing modes for accumulator operations
than for any other register.

The 6502 accumulator is an eight-bit register. Only one byte is ever fetched from memory when the accumulator
is loaded, or for operations which use two values — one from memory and the other in the accumulator (as in the addition
example above).
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15

6502 Programming M odel

| Accumulator (A) |

| X Index Register (X) |

| Y Index Register (Y) |

| Stack Pointer (S) |

Program

| Counter (PC) |

n \'

b

d

Processor Status Register (P)

z c
— Carry 1= Carry
Zero 1= Result Zero
IRQ Disable 1= Disable
Decima Mode 1= Decima Mode
Break Instruction 1= I_Break caused
interrupt
Overflow 1= Overflow
Negative 1= Negative

Figure 2-1 6502 Programming M odel
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The X and Y Index Registers

The index registers are generally used either as components in generating effective addresses when any of the
indexed addressing modes are used, or as loop counters. They can be easily incremented or decremented; that is, the
value in the index registers can, by means of a single instruction, be increased or decreased by the number one. They are,
therefore, useful in accessing successive table locations, moving memory, and counting loop iterations. Unlike the
accumulator, no logical or arithmetic operations (other than incrementing, decrementing, and comparing) may be
performed upon them.

The use of indexing alows easy access to continuous series of memory locations, such as a multiple-
byte objects. Indexing is performed by adding one of several forms of base addresses, specified in the operand
field of an instruction, to the contents of an index register. While a constant operand is fixed when a program is
created, the index registers are variable and their contents can be changed readily during the execution of a
program. Asaresult, indexing provides an extremely flexible mechanism for accessing data in memory.

Although the X and Y index registers are basically similar, their capabilities are not identical. Certain
instructions and addressing modes work only with one or the other of these registers. The indirect indexed
addressing modes require the Y register. And while the X is primarily used with direct page indexed and
absolute indexed addressing, it has its own unique (though infrequently used) indexed indirect addressing
mode. These differences will become clear as you learn more about the different addressing modes.

The Status Register

The status register (also called the P register, for processor status) contains a number of flags which
describe, in part, the status of the microprocessor and its operations. A flag is, in this case, a single bit within
the status register. Its value, set (a one) or reset (a zero), indicates one of two conditions. While the 6502's
eight-bit status register could provide eight one-bit flags, only seven of them are used.

Figure 2.1 showed the 6502 P status register; Tables 2.1 and 2.2 describe the functions of its flags.

Table 2.1 describes the five status register condition code flags — negative, zero, overflow, carry, and
break. Their values indicate various conditions that result from the execution of many 6502 instructions. Some
instructions affect none of the condition code flags, others affect only some, and till others affect all. The
effect that an instruction has on the condition flags is an important part of describing what the instruction does.
These condition code flags are used to determine the success or failure of the branch on condition instructions.

Notice particularly the zero flag (z). It can sometimes confuse assembly programmers because a zero
flag setting of one indicates a zero result while a zero flag setting of zero indicates a non-zero result.
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Explicitly Set or cleared to
Name Abbrev Bit Set or clear Reflect an operation result
negative n 7 _ Reflects most significant bit results

(the sign of atwo’s-complement binary number):
0= High bit clear (positive result)
1= high bit set (negative result)

Zero 7 1 - Indicates zero or non-zero results:
0= non-zero result
1- zero result
overflow v 6 Cleartoreverse Indicates invalid carry into high bit of arithmetic
“set-overflow” result (tow’ s-complement overflow):
hardware input 0= two’ s-compliment result ok

1= error if two’ s-complement arithmetic

carry c 0  Clear before starting Arithmetic overflow:
addition addition: carry out of high hit:
Set before starting 0= no carry
subtraction 1=carry

subtraction: borrow required to subtract:
0= borrow required
1= no borrow required
Logic:
receives bit shifted or rotated out;
source of bit rotated in

break b 4 Status register itself: no function; value unknown.
Pushed status register after interrupt:
indicates source of interrupt:
0= hardware interrupt
1= software interrupt (BRK) instruction)

Table 2-1 Status Register Condition Code Flags

In connection with the carry flag, it is important to know that the 6502 add operation has been designed
to always add in the carry, and the subtract operation to aways use the carry as a borrow flag, making it
possible to do multiple-precision arithmetic where you add successively higher sets of bytes plus the previous
adds carry or subtract successfully higher sets of bytes taking into the operation that previous subtract’s borrow.
The drawback to this scheme is that the carry must be zeroed before starting an add and set before starting a
subtraction.

In the case of subtraction, the 6502's carry flag is an inverted borrow, unlike that of most other
microprocessors. |f aborrow occurred during the last operation, it is cleared; if a borrow did not result, it is set.

Finally, notice that in the status register itself, the break bit has no function. Only when an interrupt
pushes the statue register onto the stack is the break bit either cleared or set to indicate the type of interrupt
responsible.

Table 2.2 describes the other two P register flags, the mode select flags: by explicitly setting or clearing
them, you can change the operational modes of the processor.
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Reason to explicitly
Name Abbrev Bit set or clear

decimal d 3  Determines mode for add & subtract (not increment/decrement, through):
Set to force decimal operations (BCD)
Clear to return to binary operation

interrupt [ 2 Enablesor disables processor’'s IRQ interrupt line:
Set to disable interrupts by masking the IRQ line
Clear to enable IRQ interrupts

Table 2-2 Status Register Mode Select Flags

The decimal mode flag toggles add and subtract operations (but not increment or decrement
instructions) between binary and decimal (BCD). Most processors require a separate decimal-adjust operation
after numbers represented in decimal format have been added or subtracted. The 65x processors do on-the-fly
decimal adjustment when the decimal flag is set.

The IRQ disable or interrupt disable flag, toggles between enabling and diabling interrupts.
Typically, the interrupt mask is set during time-critical loops, during certain 1/0 operations, and while servicing
another interrupt.

The Stack Pointer

The stack pointer (S) implements directly in hardware a data structure known as a stack or push-down
stack. The stack is a dedicated area of memory which is accessed by the user via push and pull instructions.
Push stores the contents of a register onto the stack; pull retrieves a data item from the stack, storing it into a
register.

The 6502’ s stack is limited to 256 bytes by the eight-bit width of its stack pointer. The chip confines it
in memory between $100 and $1FF by fixing the high-order byte of the stack address at $01. Software power-
up routines generaly initialize the 6502 stack pointer to $FF, resulting in an initial stack location of $1FF (see
Figure 2.2).

The push and pull instructions are one-byte instructions. the instruction itself specifies the register
affected and the value in the stack pointer register, added to $100, specifies the stack memory location to be
accessed.

When a push instruction is executed, data is moved from the register specified by the instructions
opcode to the stack address pointed to by the stack pointer. As Figure 2.3 shows, the value in the stack pointer
is then decremented so that it points to the next memory location — the location to which the next push
instruction encountered will store its data.

The pull instruction reverses the process and retrieves data from the stack. When a pull instruction is
executed, first the stack pointer isincremented, the register specified in the instruction opcode is loaded with the
data at the incremented address point to by SP.
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Initializing the Stack Pointer to $FF:
Resulting Initial Stack of $1FF

Stack Pointer = $FF

o oo0 o0 00O IT1T2 2212 1 1 1 1

Stack
SO1FF P (1% available)
$O1FE
$01FD
$01FC
$01FB

Figure 2-2 Initializing the Stack Pointer to $FF

In addition to being available as a temporary storage area, the stack is also used by the system itself in
processing interrupts, subroutine calls, and returns. When a subroutine is called the current value of the
program counter is pushed automatically onto the stack; the processor executes a return instruction by reloading
the program counter with the value on the top of the stack.

While data is pushed into subsequently lower memory locations on the 65x stacks, the location of the
last data pushed is nonetheless referred to an the top of the stack.
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After Pushing the Accumulator

Stack Pointer = $FE
/O 0O 0O 00O 00O 1]2 1 1 1 1 1 1 o0 |

Stack
$O1FF A A A A A A A A <
SO1FE P | (next available)
$01FD
$01FC
$01FB
Accumulator
A A A A A A A A]

Figure 2-3 After Pushing the Accumulator
The Program Counter

The program counter (PC) contains the address of the next byte in the instruction stream to fetch.
Execution of a program begins when the program counter is set to the program’s entry point (typicaly the
address at which it is loaded). The processor fetches an instruction opcode from location, and proceeds to
execute it. Based on the given opcode, the processor will need to fetch zero, one, or two bytes of operand from
the successive locations following the instruction. When the operand has been fetched, the instruction is
executed. The program counter is normally incremented to point to the next instruction in memory, except in
the case of jump, branch, and call instructions, which pass control to a new location within the program by
storing the new location to the program counter.

The 6502 program counter is sixteen bits wide, allowing for programs of up to 64K byte. If the program counter
is still incremented past $FFFF, it wraps around to $0000.

Addressing M odes

The fourteen different addressing modes that may be used with the 6502 are shown in Table 2.3. The
availability of this many different addressing modes on the 6502 gives it much of its power: Each one alows a
given instruction to specify its effective address — the source of the data it will reference —in a different manner.

Not all addressing modes are available for all instructions; but each instruction provides a separate
opcode for each of the addressing modes its supports.
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Addressing Mode Syntax Example
Opcode | Operand
Implied DEX
Accumulator ASL A
Immediate LDA #55
Absolute LDA $2000
Program Counter Relative BEQ LABEL12
Stack PHA
Zero Stack LDA $81
Absolute Indexed with X LDA $2000,X
Absolute Indexed with Y LDA $2000,Y
Zero Page Indexed with X LDA $55,X
Zero Page Indexed with Y LDX $55,Y
Absolute Indirect JMP ($1020)
Zero Page Indirect Indexed with Y (Postindexed) LDA ($55),Y
Zero Page Indexed Indirect with X (Preindexed) LDA ($55,X)

Table 2-3 6502 Addressing Modes

For some of the 6502 addressing modes, the entire effective address is provided in the operand field of
the instruction; for many of them, however, formation of the effective address involves an address calculation,
that is, the addition of two or more values. The addressing mode indicates where these values are to come from
and how they are to be added together to form the effective address.

Implied addressing instructions, such as DEY and INX, need no operands. The register that is the
source of the data is named in the instruction mnemonic and is specified to the processor by the opcode.
Accumulator addressing, in which data to be referenced is in the accumulator, is specified to the assembler by
the operand A. Immediate addressing, used to access data which is constant throughout the execution of a
program, causes the assembler to store the data right into the instruction stream. Relative addressing provides
the means for conditional branch instructions to require only two bytes, one byte less than jump instructions
take. The one-byte operand following the branch instruction is an offset from the current contents of the
program counter. Stack addressing encompasses all instructions, such as push or pull instructions, which use
the stack pointer register to access memory. And absolute addressing allows data in memory to be accessed by
means of its address.

Like the 6800 processor, the 6502 treats the zero page of memory specially. A page of memory is an
address range $100 bytes (256 decimal) long: the high bytes of the addresses in a given page are all the same,
while the low bytes run from $00 through $FF. The zero page is the first page of memory, from $0000 through
$OOFF (the high byte of each address in the zero page is zero). Zero page addressing, a short form of absolute
addressing, allows zero page operands to be referenced by just one byte, the lower-order byte, resulting both in
fewer code bytes and in fewer clock cycles.

While most other processors provide for some form of indexing, the 6502 provides some of the
broadest indexing possibilities. Indexed effective addresses are formed from the addition of a specified base
address and index, as shown in Figure 2.4. Because the 6502's index registers (X and Y) can hold only eight
bits, they are seldom used to hold index bases; rather, they are amost aways used to hold the indexes
themselves. The 6502's four simplest indexing modes add the contents of the X or Y register to an absolute or
zero page base.

Indirection (Figure 2.5) is less commonly found in microprocessor repertoires, particularly among
those microprocessors of the same design generation as the 6502. It lets the operand specify an address at
which another address, the indirect address, can be found. It is at this second address that data will be
referenced. The 6502 not only provides indirection for its jump instruction, allowing jumps to be vectored and
revectored, but it also combines indirection with indexing to give it real power in accessing data. It’s as though
the storage cells for the indirect addresses are additional 6502 registers, massively extending the 6502’ s register
set and possibilities. In one addressing mode, indexing is performed before indirection; in ancther, after. The
first provides indexing into an array of indirect addresses and the second provides indexing into array which is
located by the indirect address.

The full set of 65x addressing modes are explained in detail in Chapters 7 and 11 and are reviewed in
the Reference Section
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Indexing: Base plus Index
For example Base = $2000
Index Register X =$ 03
Effective Address = $2003
Base = $2000
/[0 01 00 00 0[O0 0O OOOOTUO O]

$2000

$2001

$2002

$2003

a
$2004

Figure 2-4 Indexing: Base Plus Index

I nstructions

The 6502 has 56 operation mnemonics, as listed in Table 2.4, which combine with its many addressing

modes to make 151 instructions available to 6502 programmers.

Arithmetic instructions are available, including comparisons, increment, and decrement. But missing
are addition or subtraction instructions which do not involve the carry; as a result, you must clear the carry

before beginning an add and set it before beginning subtraction.
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Indirection: Operand L ocates Indirect Address

For Example: Zero Page Operand = $20
Data at $20.21 (Indirect Address) = $3458
Effective Address = $3458
Zero Page
Operand = $20
0 0 1 0 0 0 0 0

$001F

$0020

$0021

$58

$0022

$0023

$3456

$3457

$3458

$3458
—

$3459

$345A

Figure 2-5 Indirection: Operand Locates Indirect Address
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I nstruction
Mnemonic

Description

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BNE
BPL
BRK
BVC
BVS
cLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
MP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEl
STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Add memory and carry to accumulator
And accumulator with memory

Shift memory or accumulator |eft one bit
Branch if carry clear

Branch if carry set

Branch if equal

Test memory bits against accumulator
Branch if negative

Branch if not equal

Branch if plus Software break (interrupt)
Branch if overflow clear

Branch if overflow set

Clear carry flag

Clear decima mode flag

Clear interrupt-disable flag

Clear overflow flag

Compare accumulator with memory
Compare index register X with memory
Compare index register Y with memory
Decrement

Decrement index register X

Decrement index register Y
Exclusive-OR accumulator with memory
Increment

Increment index register X

Increment index register Y

Jump

Jump to subroutine

Load accumulator from memory

Load index register X from memory
Load index register Y from memory
Logical shift memory or accumulator right
No operation

OR accumulator with memory

Push accumulator onto stack

Push status flags onto stack

Pull accumulator from stack

Pull status flags from stack

Rotate memory or accumulator left one bit
Rotate memory or accumulator fight one bit
Return from interrupt

Return from subroutine

Subtract memory with borrow from accumulator
Set carry flag

Set decimal mode flag

Set interrupt-disable flag

Store accumulator to memory

Store index register X to memory

Store index register Y to memory
Transfer accumulator to index register X
Transfer accumulator to index register Y
Transfer stacker point to index register X
Transfer index register X to accumulator
Transfer index register X to stack pointer
Transfer index register Y to accumulator

Table 2-4 6502 Instructions
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Logic instructions available include shifts and rotates, as well as an instruction for bit comparing.

Branch instructions are entirely flag-based, not arithmetic-operation based, so there are no single
branch-on-greater-than, branch-on-less-than-or-equal, or signed arithmetic branches. There is aso no
unconditional branch and no branch-to-subroutine. The unconditional branch can be imitated by first executing
one of the 6502's many clear- or set- flag instructions, then executing a branch-on-the-flag’ s-condition
instruction.

All three of the main user registers can be loaded from and stored to memory, but only the accumulator
(not the index register) can be pushed onto and pulled from the stack (although the flags can also be pushed and
pulled). On the other hand, single instructions let the accumulator value be transferred to either index register
or loaded from either index register. One more transfer instruction is provided for setting the value of the stack
pointer to the value in the X index register.

The 6502 System Design

There are a number of other features of the 6502's design which make it unique and make systems
designed with it stand apart from systems designed with other microprocessors.

Pipelining

The 65x microprocessors have the capability of doing two things at once: the 6502 can be carrying on
an internal activity (like an arithmetic or logical operation) even asit’s getting the next instruction byte from the
instruction stream or accessing datain memory.

A processor is driven by a clock signal which synchronizes events within the processor with memory
accesses. A cycle is a basic unit of time within which a single step of an operation can be performed. The
speed with which an instruction can be executed is expressed in the number of cycles required to complete it.
The actual speed of execution is a function both of the number of cycles required for completion and the
number of timing signals provided by the clock every second. Typical clock values for 65x processors start at
one million cycles per second and go up from there.

As aresult of the 6502’ s capability of performing two different but overlapping phases of a task within
asingle cycle, which is called pipelining, the 65x processors are much faster than non- pipelined processors.

Take the addition of a constant to the 6502's eight-bit accumulator as an example. This requires five
distinct steps:

Step 1: Fetch the instruction opcode ADC.

Step 2: Interpret the opcode to be ADC of a constant.

Step 3: Fetch the operand, the constant to be added.

Step 4: Add the constant to the accumulator contents.

Step 5: Store the result back to the accumulator.

Pipelining alows the 6502 to execute steps two and three in a single cycle: after getting an opcode, it
increments the program counter, puts the new program address onto the address bus, and gets the next program
byte, while simultaneoudly interpreting the opcode. The completion of steps four and five overlaps the next
instruction’s step one, eliminating the need for two additiona cycles.

So the 6502’ s pipelining reduces the operation of adding a constant from five cyclesto two!

The clock speed of a microprocessor has often been incorrectly presumed to be the sole determinant of
its speed. What is most significant, however, is the memory cycle time. The 68000, for example, which
typically operates at 6 to 12 megahertz (MHz, or millions of cycles per second) requires four clock periods to
read or write data to and from memory. The 65x processors require only one clock period. Because the 6502
requires fewer machine cycles to perform the same functions, a one-megahertz 6502 has a throughput unmatched
by the 8080 and Z80 processors until their clock rates are up to about four MHz.

The true measure of the relative speeds of various microprocessors can only be made by comparing
how long each takes, in its own machine code, to complete the same operation.
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Memory Order of Multiple-Byte Values

Multiple-byte values could be stored in memory in one of two ways: low-order byte first, followed by
successively high order bytes; or high-order bytes first, followed by successively lower order bytes. The 6502,
like the Intel and Zilog chip (the 8080, Z80, 8086, and so on), but unlike the Motorola chips (the 6800, 6809,
68000, and so on), puts the low-order byte first, into the lower memory address.

This seemingly unnatural order of the placement of multiple-byte values in memory as a $30 followed
by $FE is not $30FE but rather $FE30. Multiple-byte values are written high-order first, to read from left to
right; this is the opposite of how the bytes are placed in memory. This memory order, however, contributes to
the success and speed of pipelining. Consider, as an example, the loading of the accumulator using absolute
indexed addressing (two lines for a cycle indicate simultaneous operations due to pipelining):

Cycle 1:Fetch the instruction opcode, LDA.

Cycle 2:Fetch the operand byte, the low byte of an array base.

Interpret the opcode to be LDA absolute indexed.
Cycle 3:Fetch the second operand byte, the high array base byte.
Add the contents of the index register to the low byte.
Cycle 4:Add the carry from the low address add to the high byte.
Cycle 5:Fetch the byte at the new effective memory address.

(NOTE: The 6502 aso does afetch during Cycle 4, before it checks to see if there was any carry; if thereis no
carry into the high byte of the address, as is often true, then the address fetched from was correct and there is no
cycle five; the operation is a four-cycle operation in this case. Absolute indexed writes, however, always
require five cycles)

The low-high memory order means that the first operand byte, which the 6502 fetches before it even
knows that the opcode is L DA and the addressing mode is absolute indexed, is the low byte of the address base,
the byte which must be added to the index register value first; it can do that add while getting the high-byte.

Consider how high-low memory order would weaken the benefits of pipelining and slow the process
down:

Cycle 1:Fetch the instruction opcode, LDA.

Cycle 2:Fetch an operand byte, the high byte of an array base.
Interpret the opcode to be LDA absolute indexed.

Cycle 3:Fetch the second operand byte, the low array base byte.
Store the high byte temporarily.

Cycle 4:Add the contents of the index register to the low byte.

Cycle 5:Add the carry from the low address add to the high byte.

Cycle 6:Fetch the byte at the new effective memory address.

Memory-Mapped | nput/Output

The 65x family (like Motorola's but unlike Zilog's and Intel’s) accomplishes input and output not with
specia opcodes, but by assigning each input/output device a memory location, and by reading from or writing
to that location. As aresult, there’'s virtually no limit to the number of 1/0 devices which may be connected to a
65x system. The disadvantage of this method is that memory in a system is reduced by the number of locations
which are set for 1/0 functions.

Interrupts

Interrupts tell the processor to stop what it is doing and to take care of some more pressing matter
instead, before returning to where it left off in regular program code. An interrupt is much like a doorbell:
having one means you don’t have to keep going to the door every few minutes to see if someone is there; you
can wait for it to ring instead.

An external device like a keyboard, for example, might cause an interrupt to present input. Or a clock
might generate interrupts to toggle the processor back and forth between two or more routines, letting it do
several tasks “at once.” A specia kind of interrupt is reset (the panic button), which is generally used out of
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frustration to force the processor into re-initialization. Reset generally does not return to the interrupted code
after it has been served, however.

The 6502 has three interrupt vector s — memory addresses that hold the locations of routines which are
automatically executed upon recognition of an interrupt by the processor. The first of these is used for reset.

The second vector is used both by maskable interrupts — those which you can force the processor to
ignore, either temporarily or permanently, by setting the i interrupt bit in the status register - and by software
interrupts - which are caused by the execution of the break instruction (BRK). If any hardware can cause a
maskable interrupt, the interrupt service routine pointed to by this vector must till determine the source of the
interrupt. It must poll a status flag on each possible hardware source as well as check the stacked register’'s b
flag, which is set and pushed when a break instruction is executed. When it finds the source of the interrupt, it
must then branch to a routine which will respond to the interrupt in a way appropriate to the source (getting a
character from a communications port, for example).

The third vector is used by nonmaskable interrupts, those which interrupt regardless of thei bit in the
status register. The non-maskable interrupt is usually reserved for a single high-priority or time-critical
interrupt, such as refresh of a CRT screen or to warn of impending power failure.

The 6502 was designed to service interrupts as fast as possible. Because interrupts cannot be served
until the current instruction is completed (so no data is lost), the worst case is the longest instruction time and
the 6502’ s instructions each take very few cycles to execute. As aresult, the 6502 and its successors have the
lowest interrupt latency — the time between interrupt occurrence and interrupt-handling response — of any eight-
bit or sixteen-bit processors.

NM OS Process

The 6502 is fabricated using the NM OS (pronounced “EN moss’) process (for N-channel Metal-Oxide
Semiconductor). Still one of the most common of the technologies used in large-scale and very-large-scale
integrated circuits, NMOS was, at the time the 6502 was designed and for many years after, the most cost-
efficient of the MOS technologies and the easiest process for implementation of relatively high-speed parts.
This made NMOS popular among designers of microcomputers and other devices in which hardware was an
important design factor.

Most of the current generation of 8-, 16-, and 32-bit processors were originally implemented in NMOS.
Some, like the 6502, are still only available in NMOS process versions. Others, like all of the recently designed
members of the 65x family (65C02, 65802, and 65816) were produced exclusively using the CMOS process.

Bugs and Quirks

The 6502 has a number of features which the less enthusiastic might be inclined to call bugs or quirks.

The one most clearly a bug involves using indirect addressing with the jump instruction, when its
operand endsin $FF. To use an example,

JMP ($20FF)

should cause the program counter to get, as its new low byte, the contents of $20FF, and as its new high byte,
the contents of $2100. However, while the 6502 increments the low byte of the indirect address from $FF to 00,
it fails to add the carry into the high byte, and as a result gets the program counter’s new high byte from $2000
rather than $2100.

You can also run into trouble trying to execute an unused opcode, of which the 6502 has many. The
results are unpredictable, but can include causing the processor to “hang’”.

Finally, the decimal mode is not as easy to use as it might be. The negative, overflow, and zero flagsin
the status register are not valid in decimal mode and the setting of the decimal flag, which toggles the processor
between binary and decimal math, is unknown after the processor has received a hardware “reset”.
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3) Chapter Three

Architecture of the 65C02

The 65C02 microprocessor is an enhanced version of the 6502, implemented using a silicon-gate
CMOS process. The 65C02 was designed primarily as a CMOS replacement for the 6502. As a result, the
significant differences between the two products are few. While the 65C02 adds 27 new opcodes and two new
addressing modes (in addition to implementing the original 151 opcodes of the 6502), its register set, memory
model, and types of operations remain the same.

The 65C02 is used in the Applellc and, since early 1985, in the Applelle, ands it has been provided as
an enhancement kit for earlier I1€'s.

Remember that even as the 65C02 is a superset of the 6502, the 65802 and 65816, described in the next
chapter, are supersets of the 65C02. All of the enhancements found in the 65C02 are additionally significant in
that they are intermediate to the full 65816 architecture. The next chapter will continue to borrow from the
material covered in the previous ones, and generally what is covered in the earlier of these three architecture
chaptersis not repeated in the subsequent ones, since it is true for all 65x processors.

The 65C02 Ar chitecture

Both the 65C02 and the 6502 are eight-bit processors, with a 64K address space and exactly the same
register set.

The 65C02 features some small but highly desirable improvements in the use of the status register flags:
it gives valid negative, overflow, and zero flags while in decimal mode, unlike the 6502; and it resets the
decimal flag to zero after reset and interrupt.

The 65C02 has dightly different cycle counts on a number of operations from the 6502, some shorter
and a few longer. The longer cycle counts are generally necessary to correct or improve operations from the

6502.

Addressing M odes

The 65C02 introduces the two new addressing modes shown in table 3.1, as well as supporting al the
6502 addressing modes. All of them will be explained in detail in Chapters 7 and 11, and will be reviewed in
the Reference Section.

Addressing Mode Syntax Example
Opcode Operand
Zero Page Indirect LDA ($55)
Absolute Indexed Indirect JMP ($2000,X)

Table 3-1 The 65C02's New Addressing M odes.

Zero pageindirect provides an indirect addressing mode for accessing data which requires no indexing
(the 6502’ s absolute indirect mode is available only to the jump instructions). 6502 programmers commonly
simulate indirection by loading an index register with zero (losing its contents and taking extra steps), then
using the preindexed or postindexed addressing modes to indirectly reference the data.

On the other hand, combining indexing and indirection proved so powerful for accessing data on the
6502 that programmers wanted to see this combination made available for tables of jump vectors. Absolute
indexed indirect, available for jump instruction only, provides this multi-directional branching capability,
which can be very useful for case or switch statements common to many languages.
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| nstructions

While the 65C02 provides 27 new opcodes, there are only eight new operations. The 27 opcodes result
from providing four different addressing modes for one on the new mnemonics and two for two others, and aso
from expanding the addressing modes for twelve 6502 instructions. The most significant expansion of a 6502
instruction by combining it with a 6502 addressing mode it did not previously use is probably the addition of
accumulator addressing for the increment and decrement instructions.

The new 65C02 operations, shown in Table 3.2, answer many programmer’s prayers: an unconditional
branch instruction, instructions to push and pull the index registers, and instructions to zero out memory cells.
These may be small enhancements, but they make programming the 65C02 easier, more straightforward, and
clearer to document. Two more operations alow the 65C02 to set or clear any or al of the bits in a memory
cell with asingle instruction.

Instruction
Mnemonic Description
BRA Branch always (unconditional)
PHX Push index register X onto stack
PHY Push index register Y onto stack
PLX Pull index register X form stack
PLY Pull index register Y from stack
STZ Store zero to memory
TRB Test and reset memory bits against accumulator
TSB Test and set memory bits against accumulator

Table 3-2. New 65C02 | nstructions

CMOS Process

Unlike the 6502, which is fabricated in NMOS, the 65C02 is a CMOS (pronounced “SEE
moss’) part. CMOS stands for Complementary Metal-Oxide Semiconductor.

The most exciting feature of CMOS is its low power consumption, which has made portable,
battery-operated computers possible. Its low power needs also result in lower heat generation, which
means parts can be placed closer together and heat-dissipating air space minimized in CMOS-based
computer designs.

CMOS technology is not a new process. It's been around for about as long as other MOS
technologies. But higher manufacturing costs during the early days of the technology made CMOS
impractical for the highly competitive microcomputer market until the mid 1980s, so process
development efforts were concentrated on NMOS and not applied to CMOS until 1980 or 1981.

CMOS technology has reached a new threshold in that most of its negative qualities, such as the
difficulty with which smaller geometries are achieved relative to the NMOS process, have been overcome.
Price has become competitive with the more established NMOS as well.

Bugs and Quirks

The 65C02 fixes al of the known bugs and quirks in the 6502. The result of executing unused opcodes
is now predictable-they do nothing (that is, they act like no-operation instructions). An interesting footnote is
that, depending on the unimplemented instruction that is executed, the number of cycles consumed by the no-
operation is variable between one and eight cycles. Also, the number of bytes the program counter is
incremented by isvariable. It is strongly recommended that this feature not be exploited, as its use will produce
code incompatible with the next-generation 65802 and 65816.

The jump indirect instruction has been fixed to work correctly when its operand crosses a page
boundary (although at the cost of an execution cycle). The negative overflow, and zero flags have been
implemented to work in decimal mode (also at the cost of an execution cycle). The decima mode is now reset
to binary after a hardware reset or an interrupt.
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Finally, afix which is generally transparent to the programmer, but which eliminates a possible cause of
interference with memory-mapped 1/0 devices on the 6502, is the elimination of an invalid address read while
generating an indexed effective address when a page boundary is crossed.

The quirk unique to the 65C02 results from trying to eliminate the quirks of the 6502. The timing
improvements of a number of instructions and the bug fixes from the 6502 make the 65c02 an improvement
over the 6502, but not quite fully compatible on a cycle-by-cycle basis. Thisis only a consideration during the
execution of time-critical code, such as software timing loops. As a practical example, this has affected very
little software being ported from the Apple lle to the llc.
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4) Chapter Four

Sixteen-Bit Architecture The 65816 and the 65802

While the 65C02 was designed more as a CMOS replacement for the 6502 than an enhancement of it,
the 65802 and 65816 were created to move the earlier designs into the world of sixteen-bit processing.
Although the eight-bit 6502 had been a speed demon when first released, it's competition changed over the
years as processing sixteen bits at a time became common, and as the memory new processors could address
started at a megabyte.

The 65816 and the 65802 were designed to bring the 65x family into line with the current generation of
advanced processors. First produced in prototypes in the second haf of 1984, they were released
simultaneously early in 1985. The 65816 is a full-featured realization of the 65x concept as a sixteen-bit
machine. The 65802 is its little brother, with the 65816's sixteen-bit processing packaged with the 6502's
pinout for compatibility with existing hardware.

The two processors are quite similar. They are, in fact, two different versions of the same basic design.
In the early stages of the chip fabrication process they are identical and only assume their distinct
“personalities’ during the final (metalization) phase of manufacture.

The two processors provide a wealth of enhancements: another nine addressing modes, 78 new
opcodes, a “hidden” second accumulator in eight-bit mode, and zero page which, renamed the direct page, can
be relocated to any contiguous set of $100 bytes anywhere within the first 64K of memory (which in the case of
the 65802 is anywhere in its address space). The most dramatic of all the enhancements common to both 65802
and 65816, though, is the expansion of the primary user registers — the accumulator, index register, and stack
pointer — to sixteen-bit word size. The accumulator and index registers can be toggled to sixteen bits from
eight, and back to eight when needed. The stack, pointed to by an expanded-to-sixteen-bit stack register, can be
relocated from page one to anywherein a 64K range.

The primary distinction between the two processors is the range of addressable memory: the 65816 can
address up to sixteen megabytes; the 65802 is constrained by its 6502 pinout to 64K.

A secondary distinction between the two processors is that the 65816’ s new pinout also provides several
significant new signals for the hardware designer. While outside the primary scope of this book, these new
signals are mentioned in part in this chapter and described in some detail in Appendix C.

It is important to remember that the 65802 is in fact a 65816 that has been coerced to live in the
environment designed originally for the 6502 and 65C02. Outside of the memory and signal distinctions just
listed, the 65816 and the 65802 are identical. Both have a native mode, in which their registers can be used for
either eight- or sixteen-bit operations. Both have a 6502 emulation maode, in which the 6502's register set and
instruction timings emulate the eight-bit 6502 (not the 65C02) exactly (except they correct a few 6502 bugs).
All existing 6502 software can be run by the new processor — as can virtually all 65C02 software — even as most
of the native mode’ s enhancements (other than sixteen-bit register) are programmable in emulation mode, too.

To access sixteen megabytes, the signals assigned to the various pins of the 65816’ s 40-pin package are
different from the 6502, and the 65C02 and the 65802, so it cannot be installed in existing 65x computers as a
replacement upgrade. The 65802, on the other hand, has a pinout that is identical to that of the 6502 and 65C02
and can indeed be used as a replacement upgrade.

This makes the 65802 a unique, pin-compatible, software-compatible sixteen-bit upgrade chip. You
can pull a 6502 out of its socket in any existing 6502 system, and replace it with a 65802 because it powers-on
in the 6502 emulation mode. It will run existing applications exactly the same as the 6502 did. Yet new
software can be written, and 6502 programs rewritten, to take advantage of the 65802’ s sixteen-bit capabilities,
resulting in programs which take up much less code space and which run faster. Unfortunately, even with a
65802 installed, an older system will remain unable to address memory beyond the original 64K limits of the
6502. Thisisthe price of hardware compatibility.

The information presented in this chapter builds directly on the information in the previous two
chapters; it should be considered as a continuous treatment of a single theme. Even in native mode with
sixteen-bit registers, the 65802 and 65816 processors utilize many of the 6502 and 65C02 instructions, registers,
and addressing modes in a manner which differslittle from their use on the earlier processors. If you are
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already familiar with the 6502 or the 65C02, you will discover that the 65802 and 65816 logically expand on
these earlier designs.

Power-On Status: 6502 Emulation M ode

When the 65816 and 65802 are powered on, they initialize themselves into 6502 emulation mode in
which, with the exception of fixing several 6502 bugs, they exactly emulate the 6502. The stack is confined to
page one, just like the 6502 stack pointer. The registers are configured to eight bits, to model the 6502's
registers. Every 6502 instruction isimplemented identically. The timing of each instruction is exactly the same
as on the original NMOS 6502. The direct page of the 65802 and 65816, which as you will learn can be
relocated using the sixteen-bit direct page register, is initialized to page zero, making direct page addressing
exactly equivalent to the 6502 zero page addressing. The program and data bank registers, which as you will
learn provide efficient access in the 65816 to any one or two 64K banks of memory at atime, are initialized to
the zero bank.

Unlike the NMOS 6502, which has undefined results when unimplemented opcodes are executed, and
the 65C02, which treats unimplemented opcodes as varioudly-timed and —sized no-operations, the 65802
instruction set implements every one of the 256 possible one-byte opcodes. These additional instructions are
available in emulation mode as well as in native mode.

Among the newly implemented opcodes are ones that allow the processors to be switched to their native
mode — sixteen-bit operation. While there is more to say about 6502 emulation mode, it will be easier to
understand in then context of native mode.

The Full-Featured 65x Processor: The 65816 in Native Mode
The 65816 in its native mode (as opposed to its 6502 emulation mode) has it al: sixteen-bit registers,

24-bit addressing, and all the rest. The 65802's native mode is a subset of this, as are the emulation modes of
both processors.

45



The Western Design Center

65816 Native M ode Programming Model
(16-bit accumulator & index register modes. m=0 & x=0)

23 15 7 0
| Accumulator (B) (A) or (C) Accumulator (A) |

|  DataBank Register (DBR) |

| X Index | Register (X)

| Y Index | Register (Y)
/0 0O OO OO 0 0] Direct | Page Register (D)
|
|

/0 0O OO OO 0O Stack | Pointer (S)
| Program Bank Register (PBR) Program | Counter (PC)

Processor Status Register (P)

e [ Emulation 0= Native Mode

Cary 1=_Cary
Zero 1= Result Zero

IRQ Disable 1= Disabled
Decimal Mode 1 = Decimal, 0 = Binary
Index Register Select 1 = 8-hit, 0 = 16-bit
Memory/Accumulator Select 1 = 8-bit, 0 = 16-bit
Overflow 1= Overflow
Negative 1= Negative

Figure 4-1 65816 Native M ode Programming M odel

Figure 4.1 shows the programming model for the 65816 in native mode. While the accumulator is
shown as a sixteen-bit register, it may be set to be either a single sixteen-bit accumulator (A or C) or two eight-
bit accumulators, one accessible (A) and the other hidden but exchangeable (B). While the index registers are
shown as sixteen-hit registers, they may be set, as a pair, to be either sixteen-bit registers or eight-bit registers —
their high bytes are zeroed when they are set to eight-bits. The obvious advantage of switching from a
processor with eight-bit registers to one with sixteen-bit registers is the ability to write programs which are from
25 to 50 percent shorter, and which run 25 to 50 percent faster due to the ease with which sixteen-bit data is
mani pul ated.

The feature that most clearly distinguishes the current generation of advanced microcomputer systems,
however, is the ability to address lots of memory. It is this increased memory addressability which has ushered
in the new era of microcomputer applications possibilities, such as large spreadsheets, integrated software,
multi-user systems, and more. In this regard, the 65816 stands on or above par with any of the other high-
performance microprocessors, such as the 68000, the 8086, or their successors.

There are two new eight-bit registers called bank registers. One, called the data bank register, is
shown placed above the index registers and the other, called the program bank register, is appended to the
program counter. The 65816 uses the two bank registers to provide 24-bit addressing.

A bank of memory is much like a page; just as a page is a range of memory that can be defined by
eight bits (256 bytes), a bank is a range of memory that can be defined by sixteen bits (64K bytes). For
processors like the 6502, which have only sixteen-bit addressing, a 64K bank is not a relevant concept, since the
only bank is the one being currently addressed. The 65816, on the other hand, partitions its memory range into
64K banks so that sixteen-hit registers and addressing modes can be used to address the entire range of memory.
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Bank zero, for example, is that 64K range for which, when addressed using 24 hits, the highest byte
(also called the bank byte) is zero. Similarly, a highest byte of nine in a 24-bit address would address a
location somewhere in bank nine. This highest byte is called the bank byte so that the high byte can still be
used to refer to the byte that determines the page address. In other words, “high byte” is used on the 65816 as it
ison the 6502, 65C02, and 65802, where addresses are only sixteen bits.

Another new register shown in Figure 4.1 is the direct page register. Much like the 6800's special
zero page became the 6809's direct page, the 6502's and 65C02's zero page has been transformed into the
65802's and 65816's direct page. This direct page is, as Figure 4.1 shows, limited to bank zero, shown in the
programming model by the implied zero as its bank byte. The direct page register can be set to any 256-byte
page starting on any byte boundary within bank zero. All of the 6502 instructions that use zero page addressing
use an expanded form called direct page addressing on the 65816 and 65802; however, when the direct page
register value is zero, the two modes are operationally identical.

Figure 4.1 also shows that the stack pointer has been unbound from page one to float anywhere in bank
zero by making it a sixteen-bit register.

While figure 4.1 doesn’t show the interrupt vectors, they too are located in bank zero, and they point to
interrupt handling routines which also must be located in bank zero.

Finally, the status register is different from the 6502’ s and 65C02’ s (compare Figure 4.1 with Figure 2.1
in chapter 2). The first obvious difference is the single bit labeled e for emulation hanging off the top of the
carry flag. Accessible only through the carry flag, its contents determine whether the processor is in native or
6502 emulation mode. Here it holds a zero to indicate the processor isin native mode. The second differenceis
the m and x flags replace the 6502’ s break and unused flags: m indicates the size of the accumulator (eight or
sixteen bits) as well as the size and memory accesses; x indicates the size of the two index registers (eight or
sixteen hits). Changing the contents of either of these two new flags toggles the size of the corresponding
registers. The b flag is no longer necessary to distinguish the BRK software interrupt from hardware interrupts
because native mode provides a new interrupt vector for software interrupts, separate from the hardware
interrupt vector.

Native mode also provides one timing improvement over the 6502: one cycle is saved during a cross-
page branch.

The Program Bank Register

The 65816’ s sixteen-bit program counter is concatenated to its eight-bit program counter bank register
(PBR, or K when used in instruction mnemonics) to extend its instruction-addressing capability to 24 bits.
When the 65816 gets an instruction from memory, it gets it from the location pointed to by the concatenation of
the two registers. In many ways, the net effect is a 24-bit program counter; for example, when an interrupt
occurs, al 24 bits (program counter plus program counter bank) are pushed onto the stack. Likewise, when a
return-from-interrupt occurs, 24 bits (both registers) are pulled from the stack.

All previous instructions that jumped to sixteen-bit absolute addresses still work by staying within the
same bank. Relative branches stay in the same bank; that is, you can’t branch across bank boundaries. Program
segments cannot cross bank boundaries; if the program counter increments past $FFFF, it rolls over to $0000
without incrementing the program counter bank.

New instructions and addressing modes were added to let you transfer control between banks: jump
absolute long (jump to a specified 24-bit address), jump indirect long (the operand is an absolute address in
bank zero pointing to a 24-bit address to which control is transferred), jump to subroutine long (to a specified
24-bit address, with the current program counter and program bank register pushed onto the stack first), and a
corresponding return from subroutine long, which re-loads the bank register as well as the program counter.
(The addressing modes are among those listed in Table 4.3, the instructionsin Table 4.4.)

These instructions that specify a complete 24-bit address to go to, along with native mode's software
interrupt and return from interrupt instructions, are the only ones that modify the value in the program bank
register. The program bank can be pushed onto the stack so it can be pulled into another register and be
examined or tested. But there is no instruction for pulling the program bank register from the stack, since that
would change the bank the next instruction would come from — certain to be catastrophic. To avoid such
“strange” branches across banks, the program counter bank register can only be changed when the program
counter is changed at the same time.
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The Data Bank Register

The data bank register (DBR or, when used as part of a mnemonic, B) defines the default bank to be
used for reading or writing data whenever one of the addressing modes that specifies (only) a sixteen-bit address
is used, such as the absolute, indirect, or indexed instructions found on the 6502. Such sixteen-bit effective
addresses as used with the 6502 are concatenated with the value in the data bank register to form a 24-bit
address, much as the program counter is concatenated with the program bank register. An important difference
is that, unlike the program counter bank register, the data bank register can be temporarily incremented by
instructions which use indexed addressing; in other words, bank boundaries do not confine indexing, which
crosses them into the next bank.

As aready mentioned, direct page and stack-based values are always accessed in bank zero, since the
implied bank used with the direct page and stack is zero. But indirect addresses pulled out of the direct page or
off stack (when used with addressing modes that do not further specify the bank value) point to locations in the
current data bank.

The existence of the data bank register on the 65816 provides a convenient way to access a large range
of data memory without having to resort to 24-bit address operands for every operation.

The Direct Page Register

The direct page register (D) points to the beginning of direct page memory, which replaces zero page
memory as the special page used for short-operand addressing. All of the 6502 instructions that use zero page
addressing use and expanded form called direct page addressing on the 65816 and 65802. If the direct page
register is set to zero, the direct page memory is the zero page, and direct page addressing is operationally
identical to zero page addressing.

One effect of having a direct page register is that you can set up and alternate between multiple
direct page areas, giving each subroutine or task its own private direct page of memory, which can
prove both useful and efficient.

The Stack Pointer

The native mode stack pointer holds a sixteen-bit address value. This means it can be set to point to any
location in bank zero. It aso means the stack is no longer limited in length to just $100 bytes, nor limited to
page one ($100 to $1FF). Page one therefore loses its character as a “special” memory area and may be treated
like any other page while running the 65802 or 65816 in the native mode.

Accumulator and Index Registers

The key difference between the 65816/65802 and the earlier processors in the series is that the 65816's
three primary user registers — the accumulator and the X and Y index registers — can be toggled between eight
and sixteen bits. You can select which size (eight or sixteen bits) you wish to use by executing special control
instructions that modify the new m and x flags.

This enhances the basic processing power of the chip tremendously. A simple subtraction of sixteen-bit
numbers, for example, illustrates the difference. The eight-bit 6502 must be programmed to load the low byte
of the first sixteen-bit number, subtract the low byte of the second number, then save the result, load the first
number’s high byte, subtract the second number’s, and finally, save the high result. The sixteen-bit processors,
on the other hand, can load one sixteen-bit value, subtract the other then save the sixteen-bit result. Three steps
replace six.

With its ability to change register size, the 65816 functions equally well with eight bits or sixteen.
From the programmer’ s point of view, it is a dual word size machine. The machine word size — the basic unit of
data the machine processes in a given instruction cycle — may be either byte or double byte, that is eight or
Sixteen.

In the terminology used in describing other sixteen-bit processors, the term word is used specifically to
refer to sixteen-bit data, and byte to refer to eight-bit data. But other sixteen-bit processors generaly have
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different mechanisms for selecting byte or double byte data to operate upon. The terminology appropriate to the
65802 and 65816 isto refer to sixteen-bit data as double byte, rather than word, since their word size aternates

between eight bits and sixteen, and since they can operate in either byte mode or double byte mode with equal
effectiveness. They are hybrid processors.

The width of the accumulator and the width of the index registers are independently controlled by
setting and resetting the two specia flag bits within the status register, the index register select (x) and
memory/accumulator select (m) flags. When both are set, the eight-bit register architecture of the 6502 isin
force. While very similar to the emulation mode, this eight-bit native mode is subtly different in important
ways. a BRK vector is available in the native mode; interrupt processing is different between emulation and
native mode in general; and of course sixteen-bit processing can be called up with a single instruction. Yet the
65802 and 65816 will execute a good deal of existing 6502 programs without modification in this mode.

When either or both the index register select or memory select flags are cleared, the word size of the
corresponding register(s) is expanded from eight bits to sixteen.

The four possible modes of operation are shown in Table 4.1.

eight-bit accumulator (m bit is set)
eight-bit index registers (x bit is set)
eight-bit accumul ator (m bit is set)
sixteen-bit index registers (x bitisclear)
sixteen-bit accumulator (m bit is clear)
eight-bit index registers (x bit is set)
sixteen-bit accumulator (m bit is clear)
sixteen-bit index registers (x bitisclear)

Table4-1 The Four Possible Native Mode Register Combinations

When the opcode for a given instruction is fetched from memory during program execution, the
processor may respond differently based upon the setting of the register select flags. Their settings may be
thought of as extensions to the opcode. For example, consider the following instruction:

object
code instruction

BDOOBO LDA $B000 X

which loads the accumulator with data from the effective address formed by the sum of $B000 and the contents
of the X register. The X register contents can be either eight bits or sixteen, depending upon the value of the
index select flag. Furthermore, the accumulator will be loaded from the effective address with either eight or
sixteen bits of data, depending upon the value of the memory/accumulator select flag.

The instruction and addressing mode used in the example are found aso on the 6502 and 65C02; the opcode byte
($BD) isidentical on al four processors. The 65816's hew mode flags greatly expand the scope of the 6502’ s instructions.
For programmers aready familiar with the 6502, the understanding of this basic principle — how one opcode can have up to

four different effects based on the flag settings — is the single most important principle to grasp in moving to a quick
mastery of the 65802 or 65816.
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Switching Register s Between Eight and Sixteen Bits

The two register select flags are set or cleared by two new instructions provided for modifying the
status register: one of the instructions, SEP, (set P) can be used to set any bit or bitsin the P status register; the
other, REP, (reset P) can be used to reset any bit or bitsin the status register.

Figure 4.2 shows the results of changing the index registers and accumulator between eight and sixteen
bits. When a sixteen-bit index register is switched to eight bits, the high byte is lost irretrievably and replaced
by a zero. On the other hand, when an eight-bit index register is switched to sixteen bits, its unsigned value is
retained by concatenating fit to a zero high byte; that is, the eight-bit unsigned index aready in the register is
extended to sixteen bits.

Unlike the index operations, switching the accumulator’'s size either direction is reversible. The
accumulator is treated differently due to its function, not as an index register, but as the register of arithmetic
and logic. Inthisrole, it is often called upon to operate on eight-bit values with sixteen-bit ones and vice versa

When the sixteen-bit A accumulator is switched to eight bits, the low byte becomes the new eight-bit A
accumulator while the high bit becomes the eight-bit “hidden” B accumulator. B may be seen as an annex to
the A accumulator, accessible only through a new instruction which exchanges the values in the two
accumulators (making B useful for temporarily storing of the eight-bit value in A). Conversely, when the
accumulator is switched from eight bits to sixteen, the new sixteen-bit A accumulator has, as its low byte, the
previous eight-bit A accumulator and, asits high byte, the previous hidden B accumulator.

Certain instructions that transfer the accumulator to or from other sixteen-bit registers refer to the
sixteen-bit accumulator as C to emphasize that al sixteen accumulator bits will be referenced regardless of
whether the accumulator is set to eight- or sixteen-bit mode. Again, thisisillustrated in Figure 4.2.

The Status Register
Because the emulation bit is a*phantom” bit, it cannot be directly tested, set, or cleared. Theflag that it

“phantoms’ or overlays is the carry bit; there is a special instruction, XCE, that exchanges the contents of the
two flags. Thisisthe “trapdoor” through which the emulation mode is entered and exited.
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Results of Switching Register Sizes
(L =bitsin low byte; H = bitsin high byte)

Index Registers: 16 Bitsto 8

HHHH HHHH LLLL LLLL | 0000 0000 LLLL LLLL
x=0 x=1
Index Register: 8 Bitsto 16
0000 0000 LLLL LLLL » 0000 0000 LLLL LLLL
x=1 x=0
Accumulator: 16 Bitsto 8
A B A
HHHH HHHH LLLL LLLL » HHHH HHHH LLLL LLLL
m=0 m=1
| | |
I I
(aso C) (aso C)
Accumulator: 8 Bitsto 16
B A A
HHHH HHHH LLLL LLLL » HHHH HHHH LLLL LLLL
m=1 m=0
(aso C) (aso C)

Figure 4-2 Results of Switching Register Size

Two status register bits were required for the two-flag eight-or-sixteen-bit scheme. While the 6502's
status register has only one unused status register bit available, its break flag is used only for interrupt
processing, not during regular program execution, to flag whether an interrupt comes from a break instruction or
from a hardware interrupt. By giving the break instruction its own interrupt vector in native mode, the 65816’s
designers made a second bit available for the m and x register select flags.

6502/65C02 Addressing Modes on the 65816

All of the 6502 and 65C02 addressing modes are available to the 65816/65802, but native mode's
sixteen-bit features mean you need to expand your thinking about what they will do. For example, the 65816's
direct page, which can be located anywhere in memory, replaces the earlier zero page as the special page for
short-operand addressing modes. All 6502/65C02 zero page addressing modes become direct page addressing
modes, as shown in Table 4.2.
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6502/65C02 65802/65816 Syntax Example Common to Both
Zero Page Addressing Mode Direct Page Addressing Mode Opcode Operand
Zero Page Direct Page LDA $55
Zero Page Indexed with X Direct Page Indexed with X LDA $55 X
Zero Page Indexed with Y Direct Page Indexed with Y LDX $55Y
Zero Page Indirect Indexed with Y
(Postindexed) Direct Page Indirect Indexed with Y LDA ($55), Y
Zero Page Indirect Indexed with X
(Preindexed) Direct Page Indexed Indirect with X LDA ($55, X)
Zero Page Indirect Direct Page Indirect LDA ($55)

Table4-2 Addressing Modes. Zero Pagevs. Direct Page

Notice in Table 4.2 that the assembler syntax for each direct page addressing mode (not to mention the
object bytes themselves) is the same as its zero page counterpart. The names and the results of the addressing
modes are what differ. Direct page addressing, like the 6502/65C02 zero page addressing, alows a memory
location to be addressed using only an eight-bit operand. In case of the 6502, a sixteen-bit zero page effect
address is formed from an eight-bit offset by concatenating a zero high bytetoit. In the 65802/65816, the direct
page effective address is formed by adding the eight-bit offset to the sixteen-bit value in the direct register. This
lets you relocate the direct page anywhere in bank zero, on any byte boundary. Note, however, that it is most
efficient to start the direct page on a page boundary because this saves one cycle for every direct page
addressing operation.

When considering the use of 6502/65C02 zero page instructions as 65802/65816 direct page
instructions, remember that a direct page address of $23 is located in memory at location $0023 only if the
direct page register is set to zero; if the direct page register holds $4600, for example, the direct page address
$23 is located at $4623. The direct page is essentially an array which, when it was the zero page, began at
address zero, but which on the 65816 and 65802 can be set to begin at any location.

In the 6502/65C02, the effective address formed using zero page indexed addressing from a zero page
base address of $FO0 and an index of $20 is $10; that is, zero page indexed effective addresses wrap around to
always remain in the zero page. In the emulation mode this is also true. But in native mode, there is no page
wraparound: a direct page starting at $2000 combined with a direct page base of $20 and a sixteen-bit index
holding $300 results in an effective address of $2320.

The three main registers of the 65802/65816 can, in native mode, be set to hold sixteen bits. When a
register is set to sixteen bits, then the data to be accessed by that register will also be sixteen bits.

For example, shifting the accumulator left one bit, an instruction which uses the accumulator addressing
mode, shifts sixteen bits left rather than eight if the accumulator is in sixteen-bit mode. Loading a sixteen-bit
index register with a constant using immediate addressing means that a sixteen-bit value follows the instruction
opcode. Loading a sixteen-bit accumulator by using absolute addressing means that the sixteen-bit value stored
starting at the absolute address, and continuing into location at the next address, is loaded into the accumulator.

Sixteen-bit index registers give new power to the indexed addressing modes. Sixteen-bit index registers
can hold values ranging up to 64K; no longer must the double-byte base of an array be specified as a constant
with the index register used for the index. A sixteen-bit index can hold the array base with the double-byte
constant specifying the (fixed) index.

Finally, the 65816 has expanded the scope of 6502 and 65C02 instructions by mixing and matching
many of them with more of the 6502/65C02 addressing modes. For example, the jump-to-subroutine instruction
can now perform absolute indexed indirect addressing, a mode introduced on the 65C02 solely for jump
instruction.

New 65816 Addressing Modes

Not only do the 65802 and 65816 provide all the 6502 and 65C02 addressing modes, but they also offer
nine new addressing modes of there own, in both emulation and native modes. They are shown in Table 4.3.
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Addressing Mode Syntax Example
Opcode Operand

Program Counter Relative Long BRL JMPLABEL
Stack Relative LDA 3,S
Stack Relative Indirect Indexed with Y LDA 59),Y
Block Move MVP 00
Absolute Long LDA $02F000
Absolute Long Indexed with X LDA $12D080, X
Absolute Indirect Long JMP [$2000]
Direct Page Indirect Long LDA [$55]
Direct Page Indirect Long Indexed with Y LDA [$55], Y

Table 4-3 The 65816/65802's New Addressing M odes

There are six new addressing modes that use the word “long”, but with two very different meanings.
Five of the “long” modes provide 24-bit addressing for intrabank accesses. Program counter relative long
addressing, on the other hand, provides an intrabank sixteen-bit form of relative addressing for branching. Like
all the other branch instructions, its operand is an offset from the current contents of the program counter, but
branch long’'s operand is sixteen bits instead of eight, which expands relative branching from plus 127 or minus
128 bytes to plus 32767 or minus 32768. This and other features greatly ease the task of writing position-
independent code. The use of the word “long” in the description of this addressing mode means “longer than an
eight bit offset”, whereas the word “long” used with the other four addressing modes means “longer than
sixteen bits’.

Stack relative addressing and Stack relative indirect indexed with Y addressing treat the stack like
an array and index into it. The stack pointer register holds the base of the array, while a one-byte operand
provides the index into it. Since the stack register points to the next available location for data, a zero index is
meaningless. data and addresses which have been pushed onto the stack start a index one. For stack relative,
this locates the data; for stack relative indirect indexed, this locates an indirect address that points to the base of
an array located elsewhere. Both give you the means to pass parameters on the stack in a clean, efficient
manner. Stack relative addressing is a particularly useful capability, for example, in generating code for
recursive high-level languages such as Pascal or C, which store local variables and parameters on a “stack
frame”.

Block move addressing is the power behind two new instructions that move a block of bytes — up to
64K of them — from one memory location to another all at once. The parameters of the move are held in the
accumulator (the count), the index registers (the source and destination addresses), and a unique double operand
(source and destination addresses in the operand specify the source and destination banks for the move
operation).

The five remaining “long” addressing modes provide an alternative to the use of bank registers for
referencing the 65816's sixteen-megabyte address space. They let you temporarily override the data bank
register value to address memory anywhere within the sixteen-megabytes address space. Absolute long
addressing, for example, isjust like absolute addressing except that, instead of providing a two-byte absolution
address to be accessed in the data bank, you provide a three-byte absol ute address which overrides the databank.
Absolute long indexed with X, too, isfour bytes instead of three. On the other hand, it is the memory locations
specified by absolute indirect long, direct page indirect long, and direct page indirect long indexed with Y
that hold three-byte indirect addresses instead of two-byte ones. Three-byte addresses in memory appear in
conventional 65x order; that is, the low byte is in the lower memory locations, the middle byte (still referred to
in 6502 fashion as the “high” byte) is in the next higher location, and the highest (bank) byte is in the highest
location.
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| nstructions

There are 78 new opcodes put into use through the 28 new operations listed in Table 4.4, as well as
through giving the previous processors operations additiona addressing modes.

Instruction
Mnemonic Description
BRL Branch alwayslong
coP Co-processor empowerment
JML Jump long (interbank)
JSL Jump to subroutine long(interbank)
MVN Block move negative
MVP Block move positive
PEA Push effective absolute address onto stack
PEI Push effective indirect address onto stack
PER Push effective program counter relative address onto stack
PHB Push data bank register onto stack
PHD Push direct page register onto stack
PHK Push program bank register onto stack
PLB Pull data bank register from stack
PLD Pull direct page register from stack
REP Reset status bits
RTL Return from subroutine long
SEP Set status bits
STP Stop the processor
TCD Transfer 16-bit accumulator to direct page register
TCS Transfer accumulator to stack pointer
TDC Transfer direct page register to 16-bit accumulator
TSC Transfer stack pointer to 16-bit accumulator
TXY Transfer index registers X to Y
TYX Transfer index registersY to X
WAI Wait for interrupt
WDM Reserved for future two-byte opcodes
XBA Exchange the B and A accumulators
XCE Exchange carry and emulation bits

Table 4-4 New 65816/65802 | nstructions

Five of the new push and pull instructions allow the new registers to be stored on the stack; the other
three let you push constants and memory values onto the stack without having to first load them into a register.
PER is unique in that it lets data be accessed relative to the program counter, a function useful when writing
relocatable code.

There are aso instructions to transfer data between new combinations of the registers; including
between the index registers — a long-wished-for operation; to exchange the two bytes of the sixteen-bit
accumulator; and to exchange the carry and emulation bits, the only method for toggling the processor between
emulation and native modes.

There are new jump, branch, return, and move instructions already described in the section on
addressing modes. There's a new software interrupt provided for sharing a system with a co-processor. There
are two instructions for putting the processor to “seep” in special low-power states. And finaly, there's a
reserved opcode, called WDM (the initials of the 65816’ s designer, William D. Mensch, Jr.), reserved for some
future compatible processor as the first byte of a possible 256 two-byte opcodes.
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Interrupts

Native mode supplies an entire set of interrupt vectors at different locations from the emulation mode
(and earlier 6502/65C02) ones to service native mode and emulation mode interrupts differently. Shown in
Table 4.5, al are in bank zero; in addition, the sixteen-bit contents of each vector points to a handling routine
which must be located in bank zero.

Emulation Mode Native Mode
IRQ FFFE,FFFF FFEE,FFEF
RESET FFFC,FFFD -
NMI FFFA,FFFB FFEA,FFEB
ABORT FFF8,FFF9 FFE8,FFE9
BRK - FFE6,FFE7
COP FFF4,FFF5 FFE4,FFES

All locations are in bank zero.

Table4-5 Interrupt Vector Locations

As discussed earlier in this chapter, native mode frees up the b bit in the status register by giving the
break instruction its own vector. When the BRK is executed, the program counter and the status register are
pushed onto the stack and the program counter is loaded with the address at $FFES, the break instruction vector
location.

The reset vector is only available in emulation mode because reset always returns the processor to that
mode.

The 65816/65802, both emulation and native modes, also provides a new co processor interrupt
instruction to support hardware co processing, such as by afloating point processor. When the COP instruction
is encountered, the 65802’ s interrupt processing routines transfer control to the co-processor vector location.

Finally, the pinout on the 65816 provides a new abort signal. This lets externa hardware prevent the
65816 from updating memory or registers while completing the current instruction, useful in sophisticated
memory-management schemes. An interrupt-like operation then occurs, transferring contral through the special
abort vector.

The 65802 Native M ode

For all that the 65816 is, it is not pin-compatible with the 6502 and 65C02. You can’t just replace the
earlier chips with it. It is here that the other version of this chip, the 65802, comes to its glory. The price, of
course, is that the 65802 has the same addressability limitations as the 6502 and 65C02.

Figure 4.3 shows the programming model for the 65802’ s native mode. The bank registers, while they
exist, do not modify addressability, so they are shown as eight-bit entities. All registers have been scaled back
to sixteen bits. Thereis only one bank a 65802 can address; since it holds the direct page, the stacker point, and
the interrupt vectors (bank-zero features on the 65816), you can consider the 65802's bank to be bank zero.
Otherwise, the programming model is identical to the 65816's.

The bank registers are an anomaly. They have no function because the packaging provides no pins to
connect them to. But they exist because, inside the package, the chip itself is a 65816. In fact, you can change
their value just as you would on the 65816, with a pull instruction, along jump or JSR, an interrupt, or a long
return, either from subroutine or from interrupt. Furthermore, every interrupt and return from interrupt pushes
the program bank byte onto the stack or pulls it off, just like the 65816 does. But the bank register values are
ignored (stripped from 24-bit addresses when they’ re sent to the sixteen-bit output pins).

The long addressing modes also seem misplaced here. You can execute instructions using long
addressing on the 65802, but the bank addresses are, again, ignored. They are certainly an inefficient method
for undertaking intrabank accesses and transfers, since they take up extra bytes for the bank address, and use up
extra cycles in trandation. Still, they cause the 65802 no problems, as long as you understand that the bank
value is disregarded and only the remaining sixteen bits of address are effective in pointing to an address in the
65802’ s single addressable bank of memory.
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Five of the new push and pull instructions allow the new registers to be stored on the stack; the other
three let you push constants and memory values onto the stack without having to first load them into a register.

PER is unique in that it lets data be accessed relative to the program counter, a function useful when writing
relocatable code.
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65802 Native M ode Programming M odel
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Overflow 1= Overflow

Negative 1 = Negative

Figure 4-3 65802 Native M ode Programming M odel

Finally, the bank bytes specified to the block move instructions are ignored, too. Block moves are by
necessity entirely intrabank on the 65802.

Because the abort signal was designed into the 65816 by virtue of its redesigned pinout, its vector exists
on the 65802 but has no connection to the outside world. Since there is no way to abort an instruction without
using the external pin, the abort operation can never occur on the 65802.

In al other respects, the 65802 and the 65816 are identical, so the 65802 can almost be thought of as a
65816 in a system with only 64K of physical memory installed. Table 4.6 summarizes the differences between
the 65802 and 65816 native modes and the 6502 and 65C02.
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Emulation Mode

That the 65802 provides a pinout the same as the 6502's and the 65C02’s is not enough to run al the
software written for the earlier two processors. For one thing, the eight-bit software expects interrupt handlers
to distinguish break instructions by checking the stacked break flag, and the 65802’ s native mode has no break
flag, having replaced both it and the 6502’ s unused flag with the m and x flags. For another, 6502 instructions
that use eight-bit registers to set the stack would set only half of the sixteen-bit stack. The native mode interrupt
vectors are only half of the sixteen-bit stack. The native mode interrupt vectors are different from their
6502/65C02 counterparts, as Table 4.5 showed. There are aso little differences; for example, while the direct
page can be set to the zero page, direct page indexed addresses can cross pages in native mode, but wrap on the
6502 and 65C02.

Reaching beyond hardware compatibility to software compatibility was clearly so important that the
designers of the 65802 and 65816 devised the 6502 emulation mode scheme. Both processors power-on in
emulation mode, with the bank registers and the direct page register initidized to zero. As aresult of both this
and having the same pinout, a 65802 can be substituted for a 6502 in any application and will execute the
existing software the same. Furthermore, it is possible to design second-generation 65816 systems compatible
with existing 6502 designs which, provided the computer’s designers do as good a job in providing
compatibility as the 65816's designers have, could run all existing software of the first generation system in
emulation mode, yet switch into native mode for sixteen-bit power and 24-bit addressing.

It is important to realize, however, that 6502 emulation mode goes far beyond emulating the 6502. It
embodies all the addressing mode and instruction enhancements of both the 65C02 and the 65802/65816; it has
a fully relocatable direct page register; it provides the stack relative addressing modes; and in the 65816's
emulation mode, it can switch between banks to use 24-bit addressing. The primary differences between native
and emulation modes are limitations placed on certain emulation mode registers and flags so that existing
programs are not surprised (and crashed) by non-6502-like results. These differences are summarized in Table
4.6.
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Table4-6 Maijor Dofferences Between Processors and M odes

6502 65C02 65802 Native 65802 Emulation 65816 Native 65816 Emulation
6502 pinout yes yes yes yes no no
6502 timing yes no no yes no yes
abort signa no no no no yes yes
accumul ator 8 bits 8 hits 16 or 8/8 hits 8/8 bits 16 or 8/8 bits  8/8 bits
addressing modes 14 16 25 25 25 25
address space 64K 64K 64K 64K 16M 16M
bank registers none none not connected not connected yes yes
block moves none none yes of little use yes of little use
break flag yes yes no yes no yes
decimal mode flag N,V,Zinvdid N,V,Zinvaid N, V, Z valid N, V, Z valid N,V,Zvaid N,V,Zvalid
direct page indexed wraps wraps Crosses page wraps crossespage  wraps
flags after interrupt D not modified D=0 D=0 D not modified D=0 D not modified
flags after reset D unknown D=0 D=0 D not modified D=0 D not modified
index registers 8 bits 8 hits 8 or 16 hits 8 hits 8 or 16 hits 8 bits
instructions 151 178 256 256 256 256
interrupts FFFA, FFFF FFFA, FFFF FFE4, FFEF FFF4, FFFF FFE4, FFEF FFF4, FFFF
mnemonics 56 64 92 92 92 92
specia page Zero page zero page direct page direct page direct page direct page
stack page 1 page 1 bank 0 page 1 bank 0 page 1
unused opcodes could crash NOP none none none none
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The pair of 65816 instructions have little use in emulation mode are the block move instructions.
Because the source and destination parameters for moves are passed to the instruction in the index registers,
their eight-bit limits confine the instruction to the zero page: a block can only be moved from one zero page
location to another.

Only in emulation mode do 65802/65816 interrupt vectors match their 6502/65C02 counterparts.
Native mode interrupt vectors have their own locations, as Table 4.5 showed.

Emulation Mode Registers

The 65802/65816, under emulation mode, has the same six registers as the 6502/65C02. In addition, all
of the new 65802/65816 registers are available in some form, although some of these on alimited basis. Figure
4.4 shows the result.

The primary accumulator A is aways limited to eight bits by lack of an m flag, but hidden eight-bit
accumulator B is available, as with the native mode eight-bit accumulator setting. For certain register-transfer
operations, the two are combined to form the sixteen-bit register C, just as in native mode. The index registers
are limited to eight bits by lack of a x flag. The direct page register is fully functional, athough direct page
indexing wraps rather than crossing into the next page. The stack pointer is curtailed to page one, as on the
6502 and 65C02; if a sixteen-bit value is used to set it, the high bit is ignored. Finally there are two bank
registers, which areinitialized to zero, but which can be changed to point to other banks.

Now look at the P status register. In addition to the eight bits of the standard 6502/65C02 status
register, you'll see the ninth “phantom” e bit, which contains a one; this setting puts the processor into its 6502
emulation mode.

65816 Emulation M ode Programming M odel
23 15 7 0
| Accumulator (B) El Accumulator (A) |

| Data Bank Register (DBR) |

| X Index Register (X) |
| Y Index Register (Y) |
[0 0O 0O O OO 0O 0] Direct | Page Register (D) |
/0O 0O 0O OO OO O[O O OOOTU OO0 1] Stack Pointer (S) |
| Program Bank Register (PBR) | Program | Counter (PC) |

Processor Status Register (P)
7 0

e T1— Emulation 1=6502 Emulation Mode

Cary 1=Carry
Zero  1=Result Zero
IRQ Disable 1=Disabled
Decimal Mode  1=Decimal, O=Binary
Break Instruction  1=Break caused
interrupt
Oveflow 1=Overflow

Negative  1=Negative

Figure 4-4 65816 Emulation M ode Programming M odel
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The A and B registers, which together make up the native mode sixteen-bit accumulator, are used
together in emulation mode as C solely for transferring values to and from the direct page register and the stack.

The direct page register (D) points to the beginning of direct page memory. You'll probably normally
set it to zero in the emulation mode to make the direct page identical to 6502 zero page memory. This is
particularly true if your 65802 program is running within a 6502 or 65C02 operating system. The operating
system will have stored values to zero page memory; if you change the direct page to point to another page, then
call an operation system routine, the operating system will load its information from the wrong direct page (any
page other than the zero page) and fail miserably.

Switching Between 6502 Emulation and Native Modes

As you've seen, the native mode and the 6502 emulation mode embody a number of significant
differences. When running the 65802 in an older machine, such as Applell c, Il e, or Il Plus, you will probably
call your 65802 programs from a 6502 operating system or program. Y our 65802 code can immediately switch
the processor into native mode, so you can take advantage of the additional power. You must, however, switch
back to emulation mode to use any 1/0 routines, or to call the 6502-based operating system.

Understanding the transitions between the two modes is critical, particularly in an environment where
you are switching back and forth between 6502 systems programs and your own 65802 code.

Switching from Emulation to Native Mode

When the 65802 is switched from emulation to native mode, the value in the status register’s carry bit
winds up being toggled. Native mode is set by sweeping a cleared carry bit with the current value in the
emulation bit (which was a one if the processor was in emulation mode). The m and x flags in the status
register are switched into place (replacing the b break flag) and the processor automatically forces the flags to
one which leaves the accumulator and index registers as eight-bit registers, the same as they were in emulation
mode. Therest of the bitsin the status register remain the same.

While the emulation mode stack pointer register is only eight-bit register, it can be thought of as a
sixteen-bit register with its high byte hard-wired to one, so that the emulation stack is always in page one.
When the 65802 is switched from emulation to native mode, the sixteen-bit native mode stack pointer assumes
the same value the emulation mode stack pointer has been pointing to - page one address.

All other registers make the transition unchanged.

Switching from Native to Emulation Mode

Switching from native to emulation mode also toggles the carry. The carry bit is set, then exchanged
with the emulation bit to force the processor back into emulation mode. Provided the processor was previously
in native mode, the carry flag is cleared. The status register’'s m and x bits disappear, forcing the accumulator
and index registers back to eight bits. If the index registers were in sixteen-bit mode, they keep their low bytes,
but their high bytes are permanently lost. If, on the other hand, the accumulator was in sixteen-bit mode, the
low byte remains in accumulator A while the high byte remains accessible as the hidden accumulator B. Them
bit (bit five) returns to its emulation role as the break flag; the x bit (bit four) becomes once again an unused
flag.

The stack is truncated from sixteen to eight bits, with its high byte forced to a one; that is, the stack is
forced to page one. Any value in the high byte of the stack pointer register is permanently lost, which means
you must be very careful not to “lose” a non-page-one stack. Solving this and other sticky problems involved
with calling an emulation mode routine from native mode is the goal of one of the routinesin Chapter 14.

All other registers make the transition unchanged.
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65802/65816 Bugs and Quirks

As on the 65C02, the 6502’ s bugs are corrected by the 65802. Unlike the 65C02, however, the 65802
fixes the bug either only in native mode or without modifying the 6502’s cycle counts (as the 65C02 in some
cases does). There are no unused opcodes on the 65802, although there is an opcode which, while technically
“used”, isreally reserved. If executed, it acts like a no-operation instruction.

The most anomolous feature of the 65816 is the behavior of new opcodes while in the 6502 emulation
mode. While strict 6502 compatibility is enforced for all 6502 and 65C02 opcodes, this is not the case with new
opcodes. For example, although the high byte of the stack registers is always set to one, wrapping of the stack
during the execution of a single non-6502 instruction is not supported. These issues are discussed more fully in
Chapter 16.

Because the 65802 fixes the 6502’ s bugs and quirks while leaving that chip’s timing cycles untouched,
the 65802 isin fact a hair more compatible as an upgrade chip than it the 65C02.
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Tutorial
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5) Chapter Five

SEP, REP, and Other Details

Part Three is devoted to a step by step survey of all 92 different 65816 instructions and the 25 different
types of addressing modes which, together, account for the 256 operation codes of the 65802 and 65816. Asa
matter of course, this survey naturally embraces the instruction sets of the 6502 and 65C02 as well.

The instructions are grouped into six categories. data movement, flow of control, arithmetic, logical and
bit manipulation, subroutine calls, and system control instructions. A separate chapter is devoted to each group,
and all of theinstructionsin a group are presented in their respective chapter.

The addressing modes are divided into two classes, simple and complex. The simple addressing modes
are those that form their effective address directly - that is, without requiring any, or only minimal, combination
or addition of partial addresses from several sources. The complex addressing modes are those that combine
two or more of the basic addressing concepts, such as indirection and indexing, as part of the effective address
calculation.

Almost all of the examples found in this book are intended to be executed on a system with either a
65802 or 65816 processor, and most include 65816 instructions, although there are some examples that are
intentionally restricted to either the 6502 or 65C02 instructions set for purpose of comparison.

Because of the easy availability of the pin-compatible 65802, there is a good chance that you may, in
fact, be executing your first sample programs on a system originaly designed as a 6502-based system, with
system software such as machine-level monitors and operating systems that naturally support 6502 code only.
All of the software in this book was developed and tested on just such systems (Applell computers with either
65802s replacing the 6502, or with 65816 processor cards installed).

It is assumed that you will have some kind of support environment allowing you to develop programs
and load them into memory, as well as a monitor program that lets you examine and modify memory, such as
that found in the Apple Il firmware. Since such programs were originally designed to support 6502 code, the
case of calling a 65816 program from a 6502-based system program must be given special attention.

A 65802 or 65816 system is in the 6502 emulation mode when first initialized at power-up.
Thisis quite appropriate if the system software you are using to load and execute the sample programs
is 6502-based, as it would probably not execute correctly in the native 65816 mode.

Even though amost al of the examples are for the 65816 native mode of operation, the early examples
assume that the direct page register, program counter bank register, and data register are all in their default
condition - set to zero - in which case they provide an environment that corresponds to the 64K programming
space and zero page addressing of the 6502 and 65C02. Aside from keeping the examples smple, it permits
easy switching between the native mode and the emulation mode. If you have just powered up your 65816 or
65802 system, nothing needs be done to alter these default values.

The one initidization you must do is switch from the emulation to the native mode. To switch out of
the 6502 emulation mode, which is the default condition upon powering up a system, the code in Fragment 5.1
must be executed once.

0000 18 CLC clear carry flag
0001 FB XCE exchange carry with e bit (clears e bit)
Fragment 5.1.

This clears the special e flag, putting the processor into the 65816 native mode.
If you are using a 65802 processor in an old 6502 system, the above code needs to be executed each
time an example is caled. Further, before exiting a 65816 program to return to a 6502 calling program, the

opposite sequence in Fragment 5.2 must be executed.
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0000 38 SEC set carry flag
0001 FB XCE exchange carry with e bit (set e bit)
Fragment 5.2.

Even if you are running your test programs from a fully supported 65816 or 65802 environment, you
should include the first mode-switching fragment, since the operating mode may be undefined on entry to a
program. Execution of the second should be acceptable since the system program should reinitialize itself to the
native mode upon return from a called program.

A further requirement to successfully execute the example programs is to provide a means for returning
control to the calling monitor program. In the examples, the RTS (return from subroutine) instruction is used.
The RTS instruction is not explained in detail until Chapter 12; however, by coding it at the end of each
example, control will normally return to the system program that called the example program. So to exit a
program, you will always code the sequence in Fragment 5.3.

0000 38 SEC set carry flag
0001 FB XCE exchange carry with e bit (sets e bit)
0002 60 RTS

Fragment 5.3.

Some systems may have a mechanism other than RTS to return control to the system; consult your
system documentation.

In addition to these two details, a final pair of housekeeping instructions must be mastered early in
order to understand the examples.

These two instructions are SEP and REP (set P and reset P). Although they are not formally
introduced until Chapter 13, their use is essential to effective use of the 65802 and 65816. The SEP and REP
instructions have many uses, but their primary use is to change the value of the m and x flags in the status
register. Asyou recall from Chapter 4, the m and x registers determine the size of the accumulator and index
registers, respectively. When aflag is set (has a value of one), the corresponding register is eight bits, when a
flag is clear, the corresponding register is sixteen bits. SEP, which sets bits in the status register, is used to
change either accumulator, or index registers, or both, to eight bits; REP, which clears hits, is used to change
either or both to sixteen bits. Whenever a register changes size, all of the operations that move data in and out
of the register are affected as well. In this sense, the flag bits are extensions to the opcode, changing their
interpretation by the processor.

The operand following the SEP and REP instructions is a “mask” of the flags to be modified. Since bit
five of the status register is the m memory/accumulator select flag, an instruction of the form:

REP #%000100000

makes the accumulator size sixteen bits; a SEP instruction with the same argument (or its hexadecimal
equivaent, $20) would make it eight bits. The binary value for modifying the x flag is %00010000, or $10; the
value for modifying both flags at once is %00110000, or $30. The sharp (#) preceding the operand signifies the
operand is immediate data, stored in the byte following the opcode in program memory; the percent (%) and
dollar ($) signs are specia symbols signifying either binary or hexadecimal number representation, respectively,
as explained in Chapter 1.

Understanding the basic operation of SEP and REP is relatively simple. What takes more skill is to
develop a sense of their appropriate use, since there is always more than one way to do things. Although there
is an immediate impulse to want to use the sixteen-bit modes for everything, it should be fairly obvious that the
eight-bit accumulator mode will, for example, be more appropriate to applications such as character
manipulation. Old 6502 programmers should resist the feeling that if they’re not using the sixteen-bit modes
“al the time” they’re not getting full advantage from their 65802 or 65816. The eight-bit accumulator and
index register size modes, which correspond to the 6502 architecture, can be used to do some of the kinds of
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things the 6502 was doing successfully before the option of using sixteen-bit registers was provided by the
65816. Even in eight-bit mode, the 65802 or 65816 will provide numerous advantages over the 6502.

What is most important is to develop a sense of rhythm; it is undesirable to be constantly switching
modes. Since the exact order in which a short sequence of loosely related instructions is executed is somewhat
arbitrary, try to do as many operations in a single mode as possible before switching modes. At the same time,
you should be aware that the point at which an efficiency gain is made by switching to a more appropriate mode
is reached very quickly. By examining the various possibilities, and experimenting with them, a sense that
trandates into an effective rhythm in coding can be devel oped.

Finally, a word about the examples as they appear in this book. Two different styles are used: Code
Fragments, and complete Code Listings.

Code Fragments are the kinds of examples used so far in this chapter. Code Listings, on the other hand,
are self-contained programs, ready to be executed. Both appear in boxes, and are listed with the generated
object code as produced by the assembler. Single-line listings are included in the text.

The Assembler Used in This Book

The assembly syntax used in this book is that recommended by the Western Design Center in their data
sheet (see Appendix F). The assembler actually used in the ProDOS ORCA / M assembler for the Apple Il
computer, by Byteworks, Inc. Before learning how to code the 65816, a few details about some of the
assembler directives need to be explained.

Full-line comments are indicated by starting aline with an asterisk or a semicolon.

If no starting address is specified, programs begin by default at $2000. That address can be changed by
using the origin directive, ORG. The statement

ORG $7000

When included in a source program, will cause the next byte of code generated to be located at memory location
$7000, with subsequently generated bytes following it.

Values can be assigned labels with the global equate directive, GEQU. For example, in a card-playing
program, spades might be represented by the value $7F; the program is much easier to code (and read) if you
can use label SPADE instead of remembering which of four values goes with which of the four suits, as seen in
Fragment 5.4.

0000 SPADE GEQU $7F

0000 HEART GEQU $FF

0000 CLUB GEQU $3F

0000 DIAMOND GEQU $1F
Fragment 5.4.

Now rather than loading the A accumulator by specifying a hard-to-remember value,
A97F LDA #STF
You can load it by specifying the easier-to-remember label:
A900 LDA #SPADE
Once you have defined a label using GEQU, the assembler automatically substitutes the value assigned
whenever the label is encountered.

The # sharp or pound sign is used to indicate that the accumulator is to be loaded with an immediate
constant.
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In addition to being defined by GEQU statements, labels are also defined by coded in the label field -
starting in the first column of a source line, right in front of an instruction or storage-defining directive. When
coded in front of an instruction:

A905 BEGIN LDA #5
The label defines an entry point for a branch or jJump to go to; when an instruction such as is assembled,

4C0400 JMP BEGIN
Fhe as@gmbler automatically calculates the value of BEGIN and uses that value as the operand of the IMP
mStrUCtIS/r;ri able and array space can be set aside and optionally labelled with the define storage directive, DS

directive sets aside one byte at $1000 for the variable FLAG1; the second DS directive sets aside 20 bytes
starting at $1001 for ARRAY 1.

0000 ORG $1000
0000 MAIN START
0000 00 FLAG1 DS 1
0001 00000000 ARRAY1 DS 20
0015 END

Fragment 5.5

The value stored at FL AG1 can be loaded into the accumulator by specifying FLAG1 as the operand of
the L DA instruction:
ADO010 LDA FLAG1

Program constants, primarily default values for initializing variables, prompts, and messages, are located in
memory and optionally given alabel by the declare constant directive, DC. The first character(s) of its operand
specifies atype (A for two-byte addresses, 11 for one-byte integers, H for hex bytes and C for character strings,
for example) followed by the value or values to be stored, which are delimited by single quotes.

Fragment 5.6 gives an example. The first constant, DFLAG1, is a default value for code in the
program to assign to the variable FLAG1. You may realize that DFLAG1 could be used as a variable; with a
label, later values of the flag could be stored here and then there would be no need for any initialization code.
But good programming practice suggests otherwise: once another value is stored into DFLAGL], itsinitial value
is lost, which keeps the program from being restarted from memory. On the other hand, using a GEQU to set
up DFLAG1 would prevent you from patching the location with a different value should you change your mind
about itsinitial value after the code has been assembled.

0000 FE DFLAG1 DC 11 $FE°
0001 0010 COUNT DC A $1000*
0003 496E7365 PROMPT DC C’' Insertdisk intodrivel’
001B 00 DC 1°0°
Fragment 5.6

Defining COUNT as a declared constant allows it, too, to patched in object aswell as edited in source.

PROMPT is a message to be written to the screen when the program is running. The assembler lists
only the first four object bytes generated (‘496E7365') to save room, but generates them all. The zero on the
next line acts as a string terminator.

Sometimes it is useful to define alabel at a given point in the code, but not associate it with a particular
source ling; the ANOP (assembler no-operation) instruction does this. The value of the label will be the
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location of the code resulting from the next code-generating source line. One use of this feature is to define two
labels with the same value, as shown in Fragment 5.7.

0000 BLACK ANOP
0000 0000 WHITE DS 2
Fragment 5.7

The two bytes of variable storage reserved may now be referred to as either BLACK or WHITE; their value is
the same.

Address Notation

The 16-megabyte address space of the 65816 is divided into 256 64K banks. Although it is possible to
treat the address space in a linear fashion - the range of bytes from $000000 to $FFFFFF - it is often desirable
and almost always easier to read if you distinguish the bank component of a 24-bit address by separating it with
acolon:

$00:FFFO
$xx:1234
$OL: X XXX

In these examples, the X characters indicate that that address component can be any lega value; the
thing of interest is the specified component.

Similarly, when specifying direct page addresses, remember that a direct page address is only an offset;
it must be added to the value in the direct page register:

dp:$30
$1000: 30

The dp in the first example is used to simply indicate the contents of the direct page register, whatever
it may be; in the second case, the value in the direct page register is given as $1000. Note that this notation is
distinguished from the previous one by the fact that the address to the left of the colon is a sixteen-bit value, the
address on theright is eight. Twenty-four-bit addresses are the other way around.

A third notation used in this book describes ranges of address. Whenever two addresses appear together
seperated by a single dot, the entire range of memory location between and including the two addresses is being
referred to. For example, $2000.2001 refers to the double-byte starting at $2000. If high bytes of the second
address are omitted, they are assumed to have the same value as the first address. Thus, $2000.03 refers to the
addresses between $2000 and $2003 inclusive.
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6) Chapter Six

First Examples. Moving Data

Most people associate what a computer does with arithmetic calculations and computations. That is
only part of the story. A great deal of compute time in any application is devoted to simply moving data around
the system: from here to there in memory, from memory into the processor to perform some operation, and from
the processor to memory to store aresult or to temporarily save an intermediate value. Data movement is one of
the easiest computer operations to grasp and is ideal for learning the various addressing modes (there are more
addressing modes available to the data movement operations than to any other class of instructions). |t,
therefore, presents a natural point of entry for learning to program the 65x instruction set.

On the 65x series of processors - the eight-bit 6502 and 65C02 and their sixteen-bit successors, the
65802 and 65816 - you move data almost entirely using the microprocessor registers.

This chapter discusses how to load the registers with data and store data from the registers to memory
(using one of the ssimple addressing modes as an example), how to transfer and exchange data between registers,
how to move information onto and off of the stack, and how to move blocks (or strings) of data from one
memory location to another (see Table 6-1).
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Available on:
Mnemonic 6502 65C02 65802/816 Description
Load/Store Instructions:
LDA X X X load the accumulator
LDX X X X load the X index register
LDY X X X load the Y index register
STA X X X store the accumulator
STX X X X store the X index register
STY X X X storethe Y index register
Push Instructions:
PHA X X X push the accumul ator
PHP X X X push status register (flags)
PHX X X push X index register
PHY X X push Y index register
PHB X push data bank register
PHK X push program bank register
PHD X push direct page register
Push Instructions Introduced:
PEA X push effective absolute address
PEI X push effective indirect address
PER X push effective relative address
Pull Instructions:
PLA X X X pull the accumulator
PLP X X X pull status register (flags)
PLX X X pull X index register
PLY X X pull Y index register
PLB X pull data bank register
PLD X pull direct page register
Transfer Instructions:
TAX X X X transfer A to X
TAY X X X transfer Ato Y
TSX X X X transfer Sto X
TXS X X X transfer X to S
TXA X X X transfer X to A
TYA X X X transfer Y to A
TCD X transfer C accumulator to D
TDC X transfer D to C accumulator
TCS X transfer C accumulator to S
(Continued)
TSC X transfer S to C accumulator
XY X transfer X to Y
TYX X transfer Y to X
Exchange Instructions:
XBA X exchange B & A accumulator
XCE X exchange carry & emulation bits
Sore Zero to Memory:
STZ X X store zero to memory
Block Moves:
MVN X move block in negative direction
MVP X move block in positive direction

Table 6-1 Data M ovement | nstruction
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When programming the 6502, whether you're storing a constant value to memory or moving data from
one memory location to another, one of the registers is always intermediate. The same is generaly true for the
other 65x processors, with a few exceptions: the 65816's two block move instructions, three of its push
instructions, and an instruction first introduced on the 65C02 to store zero to memory.

As aresult, two instructions are required for most data movement: one to load a register either with a
constant value from program memory or with a variable value from data memory; the second to store the value
to a new memory location.

Most data is moved via the accumulator. This is true for severa reasons. First, the accumulator can
access memory using more addressing modes than any of the other registers. Second, with a few exceptions,
it's only in the accumulator that you can arithmetically or logically operate on data (although the index
registers, in keeping with their role as loop counters and array pointers, can be incremented, decremented, and
compared). Third, data movement often takes places inside of loops, program structures in which the index
registers are often dedicated to serving as counters and pointers.

Loading and Storing Registers

To provide examples of the six basic data-movement instructions - LDA, LDX, LDY (load
accumulator or index registers) and STA, STX, and STY (store accumulator or index registers) - requires
introducing at least one of the 65x addressing modes. Except for certain instructions - such as push and pull,
which use forms of stack addressing - the absolute addressing mode will generally be used in this chapter.
Absolute addressing, available on all four 65x processors, is one of the simplest modes to understand. It
accesses data at a known, fixed memory location.

For example, to move a byte from one absolute memory location to another, load a register from the
first location, then store that register to the other location. In Listing 6.1, the eight-bit value $77 stored at the
absolute location identified by the label SOURCE is first loaded into the accumulator, then saved to the
absolute location DEST. Note the inclusion of the mode-switching code described in the previous chapter.

The code generated by the assembler, when linked, will begin at the default origin location, $2000. The
example generates 13 ($0D) bytes of actua code (the address of the RTS instruction is at memory location
$200C). The assembler then automatically assigns the next available memory location, $200D, to the label on
the following line, SOURCE. Thisline contains a DC (define constant) assembler directive, which causes the
hexadecimal value $77 to be stored at that location in the code file ($200D). Since only one byte of storage is
used, the data storage location reserved for the label DEST on the next line is $200E.

The syntax for absolute addressing lets you code, as an instruction’s operand, either a symbolic label or
an actual value. The assembler converts a symbolic operand to its correct absolute value, determined from its
context that absolute addressing is intended, and generates the correct opcode for the instruction using absolute
addressing. The assembler-generated hexadecimal object code listed to the left of the source code shows that
the assembler filled in addresses $000D and $000E as the operands for the LDA and STA instructions,
respectively (they are, of course, in the 65x’s standard low-high order and relative to the $0000 start address the
assembler assigns to its relocatable modules; the linker will modify these addresses to $200D and $200E when
creating the final 1oadable object).

As Chapter 4 explained, the 65816’ s accumulator can be toggled to deal with either eight-bit or sixteen-
bit quantities, as can its index registers, by setting or resetting the m (memory/accumulator select) or x (index
register select) flag bits of the status register. You don’t need to execute a SEP or REP instruction before every
instruction or every memory move, provided you know the register you intend to use is already set correctly.
But aways be careful to avoid making invalid assumptions about the modes currently in force, particularly
when transferring control from code in one location to code in another.

The load and store instructions in Listing 6.1 will as easily move a double byte as they did a
byte, if the register you use isin sixteen-bit mode, asin Listing 6.2.
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0001 0000 KEEP KL.6.1
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; code to switch from 6502 emulation to native mode
0007 0000
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with E bits (clear E bit)
0010 0002
0011 0002 ; main example code
0012 0002
0013 0002 E220 SEP #%00100000 set 8-bit data mode
0014 0004 ADODOO LDA SOURCE load byte from memory location SOURCE
0015 0007  8DOEQOO STA DEST store byte to memory location DEST
0016  OOOA
0017  OOOA ; code to return to 6502 emulation mode
0018  OOOA
0019 O000A 38 SEC set carry flag
0020 000B FB XCE exchange carry with E bit (set E bit)
0021  000C ;
0022 000C 60 RTS
0023 000D
0024 000D 77 SOURCE DC H 77
0025 O0OE 00 DEST DS 1
0026  OOOF
0027  OOOF END
Listing 6.1.

Note that the source data in the define constant statement is now two bytes long, as is storage reserved
by the define storage statement that follows. If you look at the interlisted hexadecimal code generated by the
assembler, you will see that the address of the label DEST is now $200F. The assembler has automatically
adjusted for the increase in the size of the data at SOURCE, which is the great advantage of using symbolic
labels rather than fixed addresses in writing assembler programs.

The load and store instructions are paired here to demonstrate that, when using identical addressing
modes, the load and store operations are symmetrical. In case, though, a value loaded into a register will be
stored many instructions later, or never at al, or stored using an addressing mode different from that of the load
instruction.
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0001 0000 KEEPKL.6.2
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch from 6502 emulation to native mode
0007 0000 18 CLC
0008 0001 FB XCE
0009 0002 ;
0010 0002 C220 REP #%00100000  reset accumulator to 16-bit mode
0011 0004 ADODOO LDA SOURCE load double byte from memory location SOURCE
0012 0007  8DOFOO STA DEST store double byte to memory location DEST
0013 000A
0014 000A ; switch back to emulation mode
0015 O000A 38 SEC
0016 000B FB XCE
0017 000C ;
0018 000C 60 RTS
0019 000D ;
0020 000D 7F7F SOURCE DC A’'$TFTF
0021 00OF 0000 DEST DS 2
0022 0011 END
Listing 6.2.

Effect of Load and Store Operations on Status Flags

One of the results of the register load operations - LDA, LDY, and LDX - is their effect on certain
status flags in the status register. When a register is loaded, the n and z flags are changed to reflect two
conditions. whether the value loaded has its high bit set (is negative when considered as a signed, two's-
complement number); and whether the number is equal to zero. The n flag is set when the value loaded is
negative and cleared otherwise. The z flag is set when the value loaded is zero and cleared otherwise. How you
use these status flags will be covered in detail in Chapter 8, Flow of Control.

The store operation does not change any flags, unlike the Motorola 68xx store instructions. On the
other hand, Intel 808x programmers will discover the 65x processors use load and store instructions instead of
the 808x’ s all-encompassing MOV instruction. The 808x move instruction changes no flags whatsoever, unlike
the 65x load instruction, which does.

Moving Data Using the Stack

All of the 65x processors have a single stack pointer. (Thisisatypical processor design, although there
are designs that feature other stack implementations, such as providing separate stack pointers for the system
supervisor and the user.) This single stack is therefore used both by the system for automatic storage of address
information during subroutine calls and of address and register information during interrupts, and by user
programs for temporary storage of data. Stack use by the system will be covered in later chapters.

As the architecture chapters in Part Il discussed. The S register (stack pointer) points to the next
available stack location; that is, S holds the address of the next available stack location. Instructions using stack
addressing locate their data storage either at or relative to the next available stack location.

The stack pointers of the 6502 and 65C02 are only eight bits wide; the eight-bit value in the stack
pointer is added to an implied base of $100, giving the actual stack memory of $100 to $1FF; the stack is
confined to page one. The 65816’ s native mode stack pointer, on the other hand, is sixteen bits wide, and may
point to any location in bank zero (the first 64K of memory). The differenceisillustrated in Figure 6.1.
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Push

Push instructions store data, generally located in a register, onto the stack. Regardless of a register's
size, the instruction that pushes it takes only a single byte.

When a byte is pushed onto the stack, it is stored to the location pointed to by the stack pointer, after
which the stack pointer is automatically decremented to point to the next available location.

When double-byte data or a sixteen-bit address is pushed onto the stack, first its high-order byte is
stored to the location pointed to by the stack pointer, the stack pointer is decremented, the low byte is stored to
the new location pointed to by the stack pointer, and finally the stack pointer is decremented once again,
pointing past both bytes of pushed data. The sixteen-bit value ends up on the stack in the usual 65x memory
order: low byte in the lower address, high byte in the higher address.

In both cases, the stack grows downward, and the stack pointer points to the next available (unused)
location at the end of the operation.
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Pushing the Basic 65x Registers

On the 6502, only the contents of the accumulator and the status register can be pushed directly onto the
stack in a single operation, using the PHA and PHP instructions, respectively. The 65C02 adds instructions to
push the index registers onto the stack: PHX and PHY .

The 65816 and 65802 let double-byte data as well as single bytes be pushed onto the stack. Figure 6.2
shows the results of both. In the case of the accumulator and index registers, the size of the data pushed onto
the stack depends on the settings of the m memory/accumulator select and x index register select flags. Since
the accumulator and index registers are of variable size (eight bits or sixteen), the PHA, PHX, and PHY
instructions have correspondingly variable effects.

Pull

Pull instructions reverse the effects of the path instructions, but there are fewer pull instructions, all of them
single-bit instructions that pull a value off the stack into a register. Unlike the Motorola and Intel processors (68xx and
808x), the 65x pull instructions set the n and z flags. So programmers used to using pull instructions between atest and a
branch on the other processors should exercise caution with the 65x pull instructions.

Pulling the Basic 65x Registers

The 6502 pull instructions completely complement its push instructions. PLP increments the stack
pointer, then loads the processor status register (the flags) from the page one address pointed to by the offset in
the stack pointer (of course, this destroys the previous contents of the status register). PLA pulls a byte from
the stack into the accumulator, which affects the n and z flags in the status register just as a load accumulator
instruction does.

As ingtructions for pushing the index registers were added to the 65C02, complementary pull
instructions were added, too - that is, PLX and PLY. The pull index register instructions also affect then and z
flags.

On the 65802 and 65816, the push and pull instructions for the primary user registers - A, X, and Y -
have been augmented to handle sixteen-bit data when the appropriate select flag (memory/accumulator or index
register) is clear. Code these three pull instructions carefully since the stack pointer will be incremented one or
two bytes per pull depending on the current settings of the m and x flags.
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Pushing and Pulling the 65816’ s Additional Registers

The 65816 adds one-byte push instructions for al its new registers, and pull instructions for al but one
of them. In fact, the bank registers can only be accessed using the stack. PHB pushes the contents of the data
bank register, an eight-bit register, onto the stack. PLB pulls an eight-bit value from the stack into the data
bank register. Two most common uses for PHB are, first, to let a program determine the currently active data
bank, and second, to save the current data bank prior to switching to another bank.

Fragment 6.1 is a 65816 code fragment which switches between two data banks. While OTHBNK is
declared just once, it represents two different memory cells, both with the same sixteen-bit address of $FFF3,
but in two different 64K banks: one is in the data bank that is current when the code fragment is entered; the
second is in the data bank switched to by the code fragment. The code fragment could be executed a second
time and the data bank would be switched back to the original bank.

0000 OTHBNK GEQU  $FFF3 location of other bank stored here
0000
0000
0000
0000 .
0000 E220 SEP #9000100000  set accumulator to 8-bit mode
0002
0002 ADF3FF LDA OTHBNK get location of bank to switch to
0005
0005 8B PHB push current data bank onto stack
0006 48 PHA push other data bank onto stack
0007
0007 AB PLB pull data bank: make other data bank current
0008 68 PLA get original data bank into accum
0009
0009 8DF3FF STA OTHBNK store it in 2™ bank so can be restored
0ooC
0ooC
0ooC
000C

Fragment 6.1.

Similar to PHB, the PHK instruction pushes the value in the eight-bit program counter bank register
onto the stack. Again, the instruction can be used to let you locate the current bank; this is useful in writing
bank-independent code, which can be executed out of any arbitrarily assigned bank.

You're less likely to use PHK to preserve the current bank prior to changing banks (as in the case of
PHB above) because the jump to subroutine long instruction automatically pushes the program counter bank
as it changes it, and because there is no complementary pull instruction. The only way to change the value in
the program counter bank register is to execute a long jump instruction, and interrupt, or a return from
subroutine or interrupt. However, you can use PHK to synthesize more complex call and return sequences, or
to set the data bank equal to the program bank.

Finally, the PHD instruction pushes the sixteen-bit direct page register onto the stack, and PLD pulls a
sixteen-bit value from the stack into the direct page register. PHD is useful primarily for preserving the direct
page location before changing it, while PLD is an easy way to change or restore it. Note that PLB and PLD
also affect the n and z flags.
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Pushing Effective Addresses

The 65816 aso provides three instructions which can push data onto the stack without altering any
registers. These three push effective address instructions - PEA, PEI, and PER - push absolute, indirect, and
relative sixteen-bit addresses or data directly onto the stack from memory. Their use will be explained when
their addressing modes are presented in detail in Chapter 11 (Complex Addressing Modes).

Other Attributes of Push and Pull

The types of data that can be pushed but not pulled are effective addresses and the K (or more
commonly PBR) program bank register.

PLD and PL B aretypically used to restore values from a previous state.

Finally, you should note that even though the push and pull operations are largely symmetrical, data
that is pushed onto the stack from one register does not need to be pulled off the stack into the same register.
As far as the processor is concerned, data pulled off the stack does not have to be the same size as was pushed
onto it. But needless to say, the stack can quickly become garbled if you are not extremely careful.

Moving Data Between Registers
Transfers

The accumulator is the most powerful of the user registers, both in the addressing modes available to
accumulator operations and in its arithmetic and logic capabilities. As aresult, addresses and indexes that must
be used in one of the index registers must often be calculated in the accumulator. A typical problem on the
6502 and 65C02, since their registers are only eight bits wide, is that sixteen-bit values such as addresses must
be added or otherwise manipulated eight bits at atime. The other half of the value, the high or low byte, must
meanwhile be stored away for easy retrieval and quick temporary storage of register contents in a currently
unused register is desirable.

For these reasons as well as to transfer a value to a register where a different operation or addressing
mode is available, all 65x processors implement a set of one-byte implied operand instructions which transfer
data from one register to another:

TAX transfers the contents of the accumulator to the X index register
TAY transfers the contents of the accumulator to the Y index register
TSX transfers the contents of the stack pointer to the X index register
TXS transfers the contents of the X index register to the stack pointer
TXA transfers the contents of the X index register to the accumulator
TYA transfers the contents of the Y index register to the accumulator

Like the load instructions, all of these transfer operations except TXS set both the n and z flags. (TXS
does not affect the flags because setting the stack is considered an operation in which the data transferred is
fully known and will not be further manipulated.)

The availability of these instructions on the 65802/65816, with its dual-word-size architecture, naturally
leads to some questions when you consider transfer of data between registers of different sizes. For example,
you may have set the accumulator word size to sixteen bits, and the index register size to eight. What happens
when you execute a TAY (transfer A to Y) instruction?

The first rule to remember is that the nature of the transfer is determined by the destination register. In
this case, only the low-order eight bits of the accumulator will be transferred to the eight-bit Y register. A
second rule also applies here: when the index registers are eight bits (because the index register select flag is
seat), the high byte of each index register is aways forced to zero upon return to sixteen-bit size, and the low-
order value of each sixteen-bit index register contains its previous eight-bit value.

Listing 6.3 illustrates these ruleswith TAY . In this example, the value stored at the location DATAZ2 is
$0033; only the low order byte has been transferred from the accumulator, while the high byte has been zeroed.

The accumulator, on the other hand, operates differently. When the accumulator word size is switched
from sixteen bits to eight, the high-order byte is preserved in a“hidden” accumulator, B. It can even be
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accessed without changing modes back to the sixteen-bit accumulator size by executing the XBA (exchange B
with A) instructions, described in the following section. Listing 6.4 illustrates this persistence of the
accumulator’s high byte. After running it, the contents of locations RESULT. RESULT+1 will be $7F33, or
33 7F, in low-high memory order. In other words, the value in the high byte of the sixteen-bit accumulator,
$7F, was preserved across the mode switch to eight-bit word size.

Now consider the case where the sixteen-bit Y register is transferred to an eight-bit accumulator, as
shown in Listing 6.5. The result in this case is $33FF, making it clear that the high byte of the Y register has
not been transferred into the inactive high-order byte of the accumulator. The rule is that operations on the
eight-bit A accumulator affect only the low-order bytein A, not the hidden high byte in B. Transfersinto the A
accumulator fall within the rule.

Figure 6.3 summarizes the effects of transfers between registers of different sizes.

0001 0000 KEEP KL.6.3
0002 0000
0003 0000 65816 ON
0004 0000
0005 0000
0006 0000 MAIN START
0007 0000 ; switch-to-native-mode code
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with e bit (clear e bit)
0010 0002
0011 0002 C220 REP #$20 set accum to 16
0012 0004 E210 SEP #$10 set index to 8
0013 0006 AD1200 LDA DATA
0014 0009 A8 TAY
0015 O000A  C210 REP #$10 set index to 16
0016 000C  8C1400 STY DATAZ2
0017  OOOF
0018  OOOF ; return to 6502 emulation mode
0019  OOOF 38 SEC set carry flag
0020 0010 FB XCE exchange carry with e bit (set e bit)
0021 0011
0022 0011 60 RTS
0023 0012
0024 0012 33FF DATA DC A’ $FF33
0025 0014 0000 DATAZ2 DS 2
0026 0016
0027 0016 END
Listing 6.3.

There are aso rules for transfers from eight-bit to a sixteen-bit register. Transfers out of the eight-bit
accumulator into a sixteen-bit index register transfer both eight-bit accumulators.

In Listing 6.6, the value saved to RESULT is $7FFF, showing that not only is the eight-bit A
accumulator transferred to become the low byte of the sixteen-bit index register, but the hidden B accumulator
is transferred to become the high byte of the index register. This means you can form a sixteen-bit index in the
eight-bit accumulator one byte at a time, then transfer the whole thing to the index register without having to
then transfer the whole thing without having to switch the accumulator to sixteen bits first. However, take care
not to inadvertently transfer an unknown hidden value when doing transfers from the eight-bit accumulator to a
sixteen-bit index register.
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0001 0000 KEEP
0002 0000 65816
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch-to-native-mode code
0007 0000 18 CLC clear carry flag
0008 0001 FB XCE exchange carry with e bit (clear e bit)
0009 0002
0010 0002 C230 REP #$30 set accum and index sizeto 16
0011 0004 AD1400 LDA DATA16 load accum with 16-bit value at DATA16
0012 0007 E220 SEP #%$20 set accum to eight bits
0013 0009 AD1600 LDA DATAS8 load 8-bit value at DATAS8
0014 000C C220 REP #%$20 make accum 16 again
0015 OOOE 8D1700 STA RESULT  saveaccum lo.hi in RESULT.RESULT+1
0016 0011
0017 0011 ; return to 6502 emulation mode
0018 0011 38 SEC set carry flag
0019 0012 FB XCE exchange carry with e bit (set e bit)
0020 0013
0021 0013 60 RTS
0022 0014
0023 0014 FF7F DATA16 DC A’ $7TFFF
0024 0016 33 DATA8 DC H'33
0025 0017 0000 RESULT DS 2
0026 0019
0027 0019 END
Listing 6.4
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Transfers from eight-bit index register to the sixteen-bit accumulator result in the index register
being transferred into the accumulator’s low byte while the accumulator’s high byte is zeroed. Thisis
consistent with the zeroing of the high byte when eight-bit index registers are switched to sixteen bits.

In Listing 6.7, the result is $0033, demonstrating that when an eight-bit index register is transferred to
the sixteen-bit accumulator, a zero is concatenated as the high byte of the new accumulator value.

0001 0000 KEEP KL.6.5
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 ; switch to native mode
0007 0000
0008 0000 18 CLC clear carry flag
0009 0001 FB XCE exchange carry with e bit (clear e bit)
0010 0002
0011 0002 C230 REP #$30 set accum, index sizeto 16
0012 0004 AC1500 LDY DATA16 load Y -reg with 16-bit value at DATA16
0013 0007 AD1700 LDA DATAZ2 load accum with 16-bit value at DATA2
0014  000A E220 SEP #$20 set accum to eight bits
0015 000C 98 TYA transfer Y register’svalueto A
0016 000D C220 REP #%$20 make accum 16 again
0017  OOOF 8D1900 STA RESULT save accum lo.hi in RESULT>RESULT+1
0018 0012
0019 0012 ; return to 6502 emulation mode
0020 0012
0021 0012 38 SEC set carry flag
0022 0013 FB XCE exchange carry with e bit (set e bit)
0023 0014
0024 0014 60 RTS
0025 0015
0026 0015 FF7F DATA16 DC A'$TFFF
0027 0017 4433 DATAZ2 DC A’$3344°
0028 0019 0000 RESULT DS 2
0029 001B
0030 001B END
Listing 6.5.

In the 65816, transfers between index registers and the stack also depend on the setting of the destination register.
For example, transferring the sixteen-bit stack to an eight-bit register, as in Fragment 6.2, results in the transfer of just the
low byte. Obviously, though, you'll find few reasons to transfer only the low byte of the sixteen-bit stack pointer. As
always, you need to be watchful of the current modesin forcein each of your routines.

The 65816 also adds new transfer operations to accommodate direct transfer of data to and from the new 65816
environment-setting registers (the direct page register and the sixteen-bit stack register), and also to complete the set of
possible register transfer instructions for the basic 65x user register set:
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(L =hitsin low byte; H = bitsin high byte; P = previous bits unmodified by transfer)

16-Bit Index Register to 8-Bit Accumulator A
[HHHH HHHH [ LLLL LLLL | Loyt » PPPP PPPP | LLLL LLLL
XorY B A
only transfer low byte (hidden B accumulator not affected)
16-Bit Accumulator A to 8-Bit Index Register
[ HHHH HHHH [ LLLL LLLL | Lbyte p 0000 0000 [ LLLL LLLL
A XorY
only transfer low byte
16-Bit Stack Pointer to 8-Bit Index Register X
[ HHHH HHHH [ LLLL LLLL | Lbyte » 0000 0000 [ LLLL LLLL
S X
of little use: only transfers address-low
8-Bit Register to 16-Bit Accumulator A
[ 0000 0000 | LLLL LLLL | 2 bytes »/ 0000 0000 | LLLL LLLL
XorY A
high byte transferred is 0
8-Bit Accumulator A to 16-Bit index Register
| HHHH HHHH | LLLL LLLL | 2 bytes »| HHHH HHHH | LLLL LLLL
B A XorY
transfer both accumulators
8-Bit index Register X to 16-Bit Stack Pointer
| 0000 0000 | LLLL LLLL | 2bytes p/ 0000 0000 | LLLL LLLL
X S
sets stack to page O value

Figure 6-3 Register Transfers Between Different-Sized Registers
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0001 0000 KEEP KL.6.6

0002 0000 65816 ON

0003 0000

0004 0000 MAIN START

0005 0000

0006 0000 ; switch to native mode

0007 0000

0008 0000 18 CLC clear carry flag

0009 0001 FB XCE exchange carry with e bit (clear e bit)
0010 0002

0011 0002 C230 REP #$30 set accum, index size to 16 bits

0012 0004 AD1300 LDA DATA16 load accum with 16-bit value at DATA16
0013 0007 AC1500 LDY DATAZ2 load Y -reg with 16-bit value at DATA2
0014  000A E220 SEP #%$20 set accum to eight bits

0015 o000C A8 TAY transfer accumto Y

0016 000D  8C1700 STY RESULT save 16-bit index into RESULT.RESULT+1
0017 0010

0018 0010 ; return to 6502 emulation mode

0019 0010

0020 0010 38 SEC set carry flag

0021 0011 FB XCE exchange carry with e bit (set e bit)
0022 0012

0023 0012 60 RTS

0024 0013

0025 0013

0026 0013 FF7F DATA16 DC A’ $7TFFF

0027 0015 4433 DATAZ2 DC A’'$3344

0028 0017 0000 RESULT DS 2

0029 0019

0030 0019 END

Listing 6.6
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0001 0000 KEEP KL.6.7

0002 0000 65816 ON

0003 0000

0004 0000

0005 0000 MAIN START

0006 0000

0007 0000 ; switch-to-native-mode code

0008 0000

0009 0000 18 CLC clear carry flag

0010 0001 FB XCE exchange carry with e bit (clear e bit)

0011 0002

0012 0002 E210 SEP #$10 set index size to 8 bits

0013 0004 C220 REP #$20 set accum to 16 bits

0014 0006 AD1300 LDA DATA16 load accum with 16-bit value at DATA16

0015 0009  AC1500 LDY DATAS8 load Y -reg with 8-bit value at DATAS8

0016 000C 98 TYA transfer Y to accumulator

0017 000D 8D1600 STA RESULT save 16-bit accum into RESULT.RESULT+1

0018 0010

0019 0010 ; return to 6502 emulation mode

0020 0010

0021 0010 38 SEC set carry flag

0022 0011 FB XCE exchange carry with e bit (set e bit)

0023 0012

0024 0012 60 RTS

0025 0013

0026 0013

0027 0013 FF7F DATA16 DC A’ $7TFFF

0028 0015 33 DATAS8 DC H'33

0029 0016 0000 RESULT DS 2

0030 0018

0031 0018 END

Listing 6.7
0000 E210 SEP #%00010000 set index mode to 8 bits
0002 BA TSX transfer low byte of stack ptr to 8-bit x
Fragment 6.2
TCD transfersthe contents of the sixteen-bit accumulator C to the D direct page register. The use of

the letter C in this instruction’s mnemonic to refer to the accumulator indicates that this
operation is aways is a sixteen-bit transfer, regardless of the setting of the memory select flag.
For such a transfer to be meaningful, of course, the high-order byte of the accumulator must
contain avalid value.

TDC transfer the contents of the D direct page register to the sixteen-bit accumulator. Again, the use
of the letter C in the mnemonic to name the accumulator indicates that the sixteen-bit
accumulator is always used, regardless of the setting of the memory select flag. Thus, sixteen
bits are aways transferred, even if the accumulator size is eight bits, in which case the high
byte is stored to the hidden B accumulator.

TCS transfers the contents of the sixteen-bit C accumulator to the S stacker pointer register, thereby
relocating the stack. Since sixteen bits will be transferred regardless of the accumulator word
size, the high byte of the accumulator must contain valid data.

TSC transfer the contents of the sixteen-bit S stacker pointer register to the sixteen-bit accumulator,
C, regardless of the accumulator word size.

TXY transfersthe contents of the X index register to the Y index register. Since X and Y will always
have the same register size, there is no ambiguity.

TYX transfers the contents of the Y index register to the X index register. Both will always be the

same size.
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Transfer instructions take only one byte, with the source and destination both specified in the opcode
itself. In al transfers, the data remains intact in the original register as well as being copied into the new
register.

Using TCS and TCD can be dangerous when the accumulator is in eight-bit mode, unless the
accumulator was recently loaded in sixteen-bit mode so that the high byte, hidden when the switch was made to
eight-bit mode, is still known. Transferring an indeterminate hidden high byte of the accumulator aong with its
known low byte into a sixteen-bit environment register such as the stack pointer will generally result in disaster.

As aways, you need to be watchful of the modes currently in force in each of your routines.

Exchanges

The 65802 and 65816 also implement two exchange instructions, neither available on the 6502 or
65C02. An exchange differs from a transfer in the two values are swapped, rather than one value being copied
to anew location.

The first of the two exchange instructions, XBA, swaps the high and low bytes of the sixteen-bit
accumulator (the C accumulator).

The terminology used to describe the various components of the eight-or-sixteen bit accumulator is: to
use A to name the accumulator as a register that may be optionally eight or sixteen bits wide (depending on the
m memory/accumulator select flag); to use C when the accumulator is considered to be sixteen bits regardless
of the setting of the m flag; and, when A is used in eight-bit mode to describe the low byte only, to use B to
describe the hidden high byte of the sixteen-bit accumulator. In the latter case, when the accumulator size is set
to eight bits, only the XBA instruction can directly access the high byte of the sixteen-bit * double accumulator”,
B. Thisreplacement of A for B and B for A can be used to simulate two eight-bit accumulators, each of which,
by swapping, “shares’ the actual A accumulator. It can also be used in the sixteen-bit mode for inverting a
double-byte value. The XBA instruction is exceptional in that the n flag is always set on the basis of bit seven
of the resulting accumulator A, even if the accumulator is sixteen bits.

The second exchange instruction, XCE, is the 65816's only, method for toggling between 6502
emulation mode and 65816 native mode. Rather than exchange register values, it exchanges two-bits - the carry
flag, which is bit zero of the status register, and the e bit, which should be considered a kind of appendage to the
status register and which determines the use of several of the other flags.

Fragment 6.3 sets the processor to 6502 emulation mode. Conversely, native mode can be set by
replacing the SEC with a CL C clear carry instruction.

0010 38 SEC
0011 FB XCE
Fragment 6.3

Because the exchange stores the previous emulation flag setting into the carry, it can be saved and
restored later. It can also be evaluated with the branch-on-condition instructions to be discussed in Chapter 8
(Flow of Contral) to determine which mode the processor was just in. A device driver routine that needs to set
the emulation bit, for example, can save its previous value for restoration before returning.

The selection of the carry flag for the e bit exchange instruction is in no way connected to the normal
use of the carry flag in arithmetic operations. It was selected because it is easy to set and reset, it is less
frequently used than the sign and zero flags, and there are branch-on-conditions instructions which test it. The
primary use of the SEC and CL C instructions for arithmetic will be covered in upcoming chapters.

Storing Zero to Memory

The STZ instructions, introduced on the 65C02, lets you clear either a single or double byte memory
word zero, depending, as usual, on the current memory/accumulator select flag word size. Zero has long been
recognized as one of the most commonly stored values, so a*“dedicated” instruction to store zero to memory can
improve the efficiency of many 65x programs. Furthermore, the STZ instruction lets you clear memory without
having to first load one of the registers with zero. Using STZ results in fewer bytes of code, faster execution,
and undisturbed registers.
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Block Moves

The two block move instructions, available only on the 65802 and the 65816, let entire blocks (or
strings) of memory be moved at once.

Before using either instruction, all three user registers (C,X, and Y) must be set up with values which
serve as parameters.

The C accumulator holds the count of the number of bytes to be moved, minus one. It may take some
getting used to, but this “count” is numbered from zero rather than one. The C accumulator is always sixteen
bits: if the m mode flag is set to eight bits, the count is till the sixteen-bit value in C, the concatenation of B
and A.

X and Y specify either the top or the bottom addresses of the two blocks, depending on which of the
two versions of the instruction you choose. In Listing 6.8, $2000 bytes of data are moved from location $2000
to $4000.

0001 0000 KEEP KL.6.8
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002
0009 0002 C230 REP #$30 reset data and index mode to 16 bits
0010 0004 LONGA ON
0011 0004 LONGI ON
0012 0004
0013 0004 AD1300 LDA COUNT load 16-bit C accum with # bytes to be moved
0014 0007 AE1500 LDX SOURCE load 16-bit X reg with address of source
0015 000A AC1700 LDY DEST load 16-bit Y reg with address of destination
0016 000D
0017 000D 540000 MVN 0,0
0018 0010
0019 0010 38 SEC
0020 0011 FB XCE
0021 0012 60 RTS
0022 0013
0023 0013 FF1F COUNT DC A'$1FFF
0024 0015 0020 SOURCE DC A’ $2000’
0025 0017 0040 DEST DC A’$4000°
0026 0019
0027 0019 END
Listing 6.8.

The MVN instruction uses X and Y to specify the bottom (or beginning) addresses of the two blocks of
memory. Thefirst byte is moved from the addressin X to the addressin Y; then X and Y are incremented, C is
decremented, and the next byte is moved, and so on, until the number of bytes specified by the value in C is
moved (that is, until C reaches $FFFF). If C is zero, asingle first byte ismoved, X and Y are each incremented
once, and C is decremented to $FFFF.

The MVP instruction assumes X and Y specify the top (or ending) addresses of the two blocks of
memory. The first byte is moved from the address in X to the address in Y; the X, Y and C are decremented,
the next byte is moved , and so on, until the number of bytes specified by the value in C is moved (until C
reaches $FFFF).

The need for two distinct block move instructions becomes apparent when the problem of memory
overlap is considered. Typicaly, when a block of memory starting at location X is to be moved to location Y,
the intention is to replace the memory locations from Y to Y + C with the identical contents of the range X
through X + C. However, if these two ranges overlap, it is possible that as the processor blindly transfers
memory one byte at atime, it may overwrite avalue in the source range before that value has been transferred.

The rule of thumb is, when the destination range is a lower memory address than the source range, the
MVN instruction should be used (thus “Move Next") to avoid overwriting source bytes before they have been
copied to the destination. When the destination range is a higher memory location than the source range, the
MVP instruction should be used (“Move Previous’).
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While you could conceivably move blocks with the index registers set to eight bits (your only option in
emulation mode), you could only move blocks in page zero to other page zero location. For al practical
purposes, you must reset the x mode flag to sixteen bits before setting up and executing a block move.

Notice that assembling an MVN or MVP instruction generates not only an opcode, but also two bytes
of operand. The operand bytes specify the 64K bank from which and to which data is moved. When operating
in the 65816's sixteen-megabyte memory space, this supports the transfer of up to 64K of memory from one
bank to another. In the object code, the first byte following the opcode is the bank address of the destination
and the second byte is the bank address of the source.

But while this order provides microprocessor efficiency, assembler syntax has aways been the more
logical left to right, source to destination (TAY, for example, transfers the accumulator to the Y index register).
As a result, the recommended assembler syntax is to follow the mnemonic first with a 24-bit source address
then with a 24-bit destination address - or more commonly with labels representing code or data addresses. The
assembler strips the bank byte from each address (ignoring the rest) and inserts them in the correct object code
sequence. (Destination bank, source bank.) For example:

440102 MVP SOURCE, DEST move from bank of source(02) to bank of dest(01)

The bank byte of the label SOURCE is 02 while the bank byte of the label DEST is 01. As aways, the
assembler does the work of converting the more human-friendly assembly code to the correct object code
format for the processor.

If the source and destination banks are not specified, some assemblers will provide a user-specified
default bank value.

The assembler will trandate the opcode to object code, then supply its bank value for both of the
operand bytes:

440000 MVP

If either bank is different from the default value, both must be specified.
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7) Chapter Seven

SimpleAddressing M odes

The term addressing mode refers to the method by which the processor determines where it is to get
the data needed to perform a given operation. The data used by a 65x processor may come either from memory
or from one or another of the processor’s register's. Data for certain operations may optionally come from
either location, some from only one or the other. For those operations which take one of their operands from
memory, there may be severa ways of specifying a given memory location. The method best suited in a
particular instance is a function of the overall implementation of a chosen problem-solving algorithm. Indeed,
there are so many addressing modes available on the 65x processors that there is not necessarily a single
“correct” addressing mode in each situation.

This chapter deals with those addressing modes which may be described as the “simple” addressing
modes. You have aready seen some of these used in the examples of the previous chapter; the simple
addressing modes are listed in Table 7.1. Each of these addressing modes is straightforward. Those addressing
modes that require more than a simple combination of values from several memory locations or registers are
described as “complex modes’ in Chapter 11.

Available on all 65x processors: Example Syntax
immediate LDA #$12
absolute LDA $1234
direct page (zero page) LDA $12
accumulator ASL A
implied TAY

stack PHA

Available on the 65C02, 65802, and 65816 only:

direct page (zero page) indirect LDA ($12)

Available on the 65802 and 65816 only:

absolute long LDA $123456
direct page indirect long LDA [$12]
block move MVN SOURCE, DEST

Table 7-1 List of Simple Addressing Modes

In addition to solving a given problem, the processor must spend a great dea of its time smply
calculating effective addresses. The simple addressing modes require little or no effective address computation,
and therefore tend to be the fastest executing. However, the problem-solving and memory efficiencies of the
complex addressing modes, which will be described in subsequent chapters, can make up for their effective
address calculation overhead. In each case, the nature of the problem at hand determines the best addressing
mode to use.
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Immediate Addressing

Immediate data is data found embedded in the instruction stream of a program itself, immediately
following the opcode which uses the data. Because it is part of the program itself, it is aways a constant value,
known at assembly time and specified when you create the program. Typically, small amounts of constant data
are handled most efficiently by using the immediate addressing mode to load either the accumulator or an index
register with specific value. Note that the immediate addressing mode is not available with any of the store
instructions (STA, STX, or STY), since it makes no sense to store a value to the operand location within the
code stream.

To specify the immediate addressing mode to a 65x assembler, prefix the operand with a # (pound or
sharp) sign. The constant operand may be either data or an address.

For example,

A912 LDA #$12

loads the hexadecimal value $12 into the accumul ator.

The 6502 and 65C02, their registers limited to only eight bits, permit only an eight-bit operand to
follow the load register immediate opcodes. When the constant in an assembly source line is a sixteen-bit
value, greater-than and less-than signs are used to specify whether the high- or low-order byte of the double-
byte value are to be used. A less-than indicates that the low byte isto be used, and thus:

A234 LDX #<$1234

causes the assembler to generate the LDX opcode followed by a one-byte operand, the low byte of the source
operand, which is $34. It's equivalent to:

A234 LDX #$34

The use of a greater-than sign would cause the value $12 to be loaded. If neither the less-than nor
greater-than operator is specified, most assemblers will default to the low byte when confronted with a double-
byte value.

When assembling 65816 source code, the problem becomes trickier. The 6502 and 65C02 neither have
nor need an instruction to set up the eight-bit mode because they are dways in it. But the 65816’ s accumulator
may be toggled to deal with eight- or sixteen-bit quantities, as can its index registers, by setting or resetting the
m (memory/accumulator select) or x (index select) flag bits of the status register. Setting the m bit puts the
accumulator in eight-bit mode; resetting it puts it in sixteen-bit mode. Setting the x bit puts the index registers
in eight-bit mode; resetting it puts them in sixteen-bit mode.

The m and x flags may be set and reset many times throughout a 65816 program. But while assembly
code is assembled from beginning to end, it rarely executes in that fashion. More commonly, it follows a
circuitous route of execution filled with branches, jumps, and subroutine calls. Except for right after the m or x
flag has been explicitly set or reset, the assembler has no way of knowing the correct value of ether: your
program may branch somewhere, and re-enter with either flag having either value, quite possibly an incorrect
one.

While the programmer must always be aware of the proper values of these two flags, for most
instructions the assembler doesn’'t need to know their status in order to generate code. Most instructions
generated are the same in both eight- or sixteen-bit mode. Assembling a load accumulator absolute instruction,
for example, puts the same opcode value and the same absolute address into the code stream regardless of
accumulator size; it is a execution time that the m bit setting makes a difference between whether the
accumulator is loaded with one or two bytes from the absolute address.

But aload register immediate instruction is followed by the constant to be loaded. As Figure 7.1 shows,
if the register is set to eight-bit mode at the point the instruction is encountered, the 65816 expects a one-byte
constant to follow before it fetches the next opcode. On the other hand, if the register is set to sixteen-bit mode
at the point the instruction is encountered , the 65816 expects a double-byte constant to follow before it fetches
the next opcode. The assembler must put either a one-byte or two-byte constant operand into the code
following the load register immediate opcode based on the status of a flag which it doesn’t know.
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Immediate Addressing: 8 bit vs. 16
8-Bit Data [all processorg]: Data: operand byte.

Instruction:
| Opcode | Data = Operand |

16-Bit Data (65802/65816. native maode, applicable mode flag m or x=0)
Data High: Second operand byte

DataLow: First operand byte

Instruction:

DatalLow = DataHigh=
Operand Low Operand High

Opcode

Figure7-1 Immediate Addressing: 8 vs. 16 bits

Two assembler directives have been designed to tell the assembler which way to go: LONGA and
L ONGI, each followed with the value ON or OFF. LONGA ON indicates the accumulator is in sixteen-bit
mode, LONGA OFF in eight-bit mode. LONGI ON tells the assembler that the index registers are in sixteen-
bit mode, LOGI OFF that they are in eight-bit mode. Load register immediate instructions are assembled on
the basis of the last LONGA or LONGI directive the assemble has seen - that is, the one most immediately
preceding it in the source file. For example,

LONGA ON
LONGI ON

tells the assembler that both accumulator and index registers are set to sixteen bits. Now, if it next encounters
the following two instructions

A93412 LDA #$1234
A05600 LDY #$56

then the first puts a LDA immediate opcode followed by the constant $1234 into the code, and the second a
LDY immediate opcode followed by the constant $0056, again two bytes of operand, the high byte padded with
zero.

On the other hand,

LONGA OFF
LONGI OFF

tells the assembler that both accumulator and index registers are set to eight bits. Now,

A934 LDA #$1234
A056 LDY #$56

puts L DA immediate opcode followed by the constant $34 into code, and the second a LDY immediate opcode
followed by the constant $56, each one byte of operand.

Like the flags themselves, of course, one directive may be ON and the other OFF at any time. They
also do not need to both be specified at the same time.

The setting of the LONGA and LONGI directives to either ON or OFF simply represent a promise by
you, the programmer, that the flags will, in fact, have these values at execution time. The directives do nothing
by themselves to change the settings of the actual m and x flags, this is typically done by using the SEP and
REP instructions, explained earlier. (Note, incidentally, that these two instructions use a specia form of the
immediate addressing mode, where the operand is always eight bits.) Nor does setting the flags change the
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settings of the directives. You must therefore exercise to set the LONGA and LONGI flags to correctly
represent the settings of the m or x flags, and to be sure never to branch into the code with the m or x flag set
differently. If, for example, the assembler generated a L DA #$1234 instruction with LONGA set ON, only to
have the m accumulator flag set to eight bits when the code is executed, the processor would load the
accumulator with $34, then see the $12 which follows as the next opcode and try to execute it, resulting in
program failure.

Absolute Addressing

There are two categories of simple addressing modes available for accessing data in a known memory location:
absolute and direct page. The first of these, absolute addressing, is used to load or store a byte to or from a fixed memory
location (within the current 65K data bank on the 65816, which defaults to bank zero on power up). Y ou specify the
sixteen-bit memory location in the operand field (following the opcode) in your assembly language source line, as Figure
7.1 loads the eight-bit constant $34 into the accumulator, then stores it to memory location $8100 in the current data bank.

0000 E220 SEP #%00100000 set 8-bit accumulator/memory mode

0002 LONGA OFF tell assembler the accumulator mode

0002 A934 LDA #$34 load constant $34 as immediate data

0004 8D00B1 STA $B100 store byte to memory location $8100
Fragment 7.1.

The same memory move could be done with either of the index registers, as shown in Fragment 7.2
using the X register. Symbolic labels in the operand fields provide better self-documentation and easier
program modification.

0000 NUM1 GEQU  $34 give this data byte a symbolic |abel
0000 DATA GEQU  $B100 give this data byte a symbolic |abel
0000
0000 E210 SEP #%00010000 set index registers to 8-bit mode
0002 LONGI OFF tell assembler the index mode is 8-bit
0002 A234 LDX #NUM1 load constant $34 as immediate data
0004 8EOOB1 STX DATA store byte to memory location $8100
Fragment 7.2

As you have seen, the 65816's accumulator may be toggled to deal with either eight- or sixteen-bit
guantities, as can its index registers, by setting or resetting the m or x flag bits of the status register. Naturally,
you don’t need to execute a SEP or REP instructions nor a LONGA or LONGI assembler directive before
every routine, provided you know the register you intend to use is aready set correctly, and the assembler
correctly knows that the setting. But you must always exercise extreme care when developing 65816 programs
to avoid making invalid assumptions about the modes currently in force or taking unintentional branches from
code in one mode to code in another.
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Effective Address:

23 15 7 0
| Bank High Low
| DaaBank (DBR) |
Instruction:
| Opcode | OperandLow | OperandHigh |

Figure 7-2 Absolute Addressing

As Fragment 7.3 shows, the load and store instructions above will as easily move sixteen bits of data as they did
eight bits; al that's needed is to be sure the register used is in sixteen-bit mode, and that the assembler has
alerted to the setting.

0000 DATA GEQU  $B100 give this location a symbolic label

0000

0000 C210 REP #%00010000 reset index registersto 16-bit mode

0002 LONGI ON tell assembler

0002 A23412 LDX #1234 load 16-bit constant $1234 immediate

0005 8EO0B1 STX DATA store double byte to memory loc $8100
Fragment 7.3.

As indicated, absolute addresses are sixteen-bit addresses. On the 6502, 65C02, and 65802, with
memory space limited to 64K, sixteen bits can specify any fixed location within the entire address space of the
processor. Therefore, the term absolute addr essing was appropriate.

The 65816, on the other hand, with its segmentation into 256 possible 64K banks, requires a 24-bit
address to specify any fixed location within its address space. However, the same opcodes that generate 24-bit
addresses on the 65816 by concatenating the value of the data bank register with the sixteen-bit value in the
operand field of the instruction. (Instructions that transfer control, to be discussed in Chapter 8, substitute the
program bank register value for the data bank register value.)

Absolute addressing on the 65816 is therefore actually an offset from the base of the current bank;
nevertheless, the use of the term absolute addressing has survived on the 65816 to refer to sixteen-bit fixed
addresses within the current 64K data bank.

So long as the programmer needs to access only the contents of the current data bank, (sixteen-bit)
absolute addressing is the best way to access data at any known location in that bank.
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Direct Page Addressing

One of the most powerful and useful features of the 6502 and 65C02 processors is their zero page
addressing modes. A page of memory on a 65x processor consists of 256 memory locations, starting at an
address which is an integer multiple of $100 hexadecimal, that is, $0000, $0100, $0200, and so on. Generally,
pages are numbered in hexadecimal, so their range within a 64K bank is $00 through $FF. Zero page
addressing is made even more powerful and generalized as dir ect page addressing on the 65802 and 65816.

The zero page is the first of the 256 pages found within the 64K address space of the 6502 and 65C02 -
memory addresses $0000 to $OOFF. These addresses may be accessed one byte cheaper than absolute memory
accesses. Whereas loading or storing data from an absolute location will require three bytes of code, loading or
storing a byte from a zero page location requires only two bytes, as Figure 7.3 shows.

Effective Address:
| High | Low

000OO0OO0OOO0DO

I nstruction:
| Opcode Operand

Figure 7-3 Zero Page Addressing.

Since all of the addresses in the zero page are less than $0100 (such as $003F, for example) it follows
that, if the computer knew enough to assume two leading hexadecimal zeroes, a zero page address could be
represented in only one byte, saving both space and time. But if absolute addressing is used, the processor has
to assume that two bytes follow an instruction to represent the operand, regardless of whether the high-order
byte is zero or not.

This concept of expressing a zero page address with a single-byte operand was implemented on the
6502 and 65C02 by reserving separate opcodes for the various instructions using zero page addressing. Since
an instruction’ s opcode for using zero page addressing is unique (as opcodes are for al of the different modes of
a given instruction), the processor will fetch only one operand byte from the code stream, using it in effect as a
displacement from a known base ($0000, in the case of the 6502 and 65C02). Since only one byte need be
fetched from the instruction stream to determine the effective address, the execution time is faster by one cycle.
The result is a form of addressing that is shorter, both in memory use and execution time, than regular sixteen-
bit absolute addressing.

Clearly, locating your most often accessed variables in zero page memory results in considerably
shorter code and faster execution time.

The limitation of having this special area of memory available to the zero page addressing mode
instructions is that there are only 256 bytes of memory available for use in connection with it. That is, there are
only 256 zero page addresses. Resident system programs, such as operating systems and language interprets,
typically grab large chunks of page zero for their own variable space; applications programmers must carefully
step around the operating system’s variables, limiting assignment of their own program’s zero page variables to
some fraction of the zero page.

This problem is overcome on the 65816 by letting its direct page be set up anywhere within the first
64K of system memory (bank zero), under program control. No longer limited to page zero, it is referred to as
direct page addressing. The result is, potentially, multiple areas of 256 ($100) bytes each, which can be
accessed one byte and one cycle cheaper than absolute memory. Setting the direct page anywhere is made
possible by the 65816 s direct page register, which serves as the base pointer for the direct page area of
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memory. Expressed in terms of the 65816’s direct page concept, it can be said that on the 6502 (and 65C02),
the direct page is fixed in memory to be the zero page.

So 6502 and 65C02 zero page addressing opcodes become direct page opcodes on the 65802 and
65816; and when they are executed, the “zero page address’ - the single byte that the processor fetches
immediately after the opcode fetch - becomes instead a direct page offset. This means that instead of simply
pointing to a location in the range $0000 to $OOFF as it would on the 6502 and 65C02, the direct page offset is
added to the sixteen-bit value in the direct page register to form the effective direct page addr ess, which can be
anywhere in the range $00;0000 to $00; FFFF.

For purposes of this chapter, however, the discussion of the direct page addressing will be limited to the
default case, where the value in the direct page register is zero, making it functionally identical to the 6502 and
65C02 zero page addressing mode. Since it requires the effective address to be computed, relocation of the
direct page will be considered as a form of complex addressing, and will be covered in future chapters. While
“direct page offset” is more correct, it is also more abstract; the term direct page address is most commonly
used. However, it is essential to remember that it is, in fact, an offset relative to a previously established direct
page value (again, as used in this chapter, $0000).

An example of the use of direct page addressing to store a constant value to memory is as follows:

A9FO0 LDA #$FO
8512 STA $12

This stores the one-byte value $F0 at address $0012. Note that the object code generated for the store requires
only one byte for the opcode and one for operand.

A9FO0 LDA #$FO
8D0081 STA $B100

This stores the same one-byte value at the address $B100. In this case, the store requires one byte for the
opcode and two bytes for the operand.

Notice how the assembler automatically assumes that if the value of the operand can be expressed in
eight bits - if it is a vaue less than $100, whether coded as $34 or $000034 - the address is a direct page
address. It therefore generates the opcode for the direct page addressing form of the instruction, and puts only a
one-byte operand into the direct page address to store to is $12. One result of the assembler’ s assumption that
values less than $100 are direct page offsets is that physical addresses in the range $xx:0000 to $xxx:00FF
cannot be referenced normally when either the bank (the “xx”) register is other than zero or the direct page
register is set to other than $0000. For example, assembler syntax like:

A4FO LDY $FO
or
A4FO LDY $00FO

is direct page syntax. It will not access absolute address $00FO if the direct page register holds a value other
than zero; nor will it access $00FO0 in another bank, even if the data bank register is set to the other bank. Both
are evaluated to the same $FO0 offset in the direct page. Instead, to access physical address $xx00F0, you must
force absolute addressing by using the vertical bar or exclamation point in your assembler source line:

ACF000 LDY I$FO load Y absolute (not direct page ) from $00F0
Indexing

An array is a table or list in memory of sequentialy stored data items of the same type and size.
Accessing any particular item of data in an array requires that you specify both location of the base of the array
and the item number within the array. Either your program or the processor must trandate the item number into
the byte number within the array (they are the same if the items are bytes) and add it to the base location to find
the address of the item to be accessed (see Figure 7.4).
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Sometimes an array might be a table of addresses, either of data to be accessed or of the locations of
routines to be executed. In this case, the size of each item is two bytes; the first address is at locations zero and

one within the array, the second at locations two and three, the third at locations four and five and so on. You
must double the item number,
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Indexing: Base plus Index
For example: Base = $2000

Index Register X =$ 03
Effective Address = $2003

Base = $2000
l[o o 1 o o o0 o o]J]oOo o o o0 O o0 o0 o0 |
$2000
$2001
$2002
$2003 >
$2004

Figure 7-4 Indexing

resulting inthevalues 0, 2, 4, . . . fromthearray indicatesO, 1,2, . . . . and so on, to create an index into this
array of two-byte data items.

The 65x processors provide a wide range of indexing addressing modes that provide automatic
indexing capability. In al of them, a value in one of the two index registers specifies the unsigned (positive
integer) index into the array, while the instruction’ s operand specifies either the base of the array or a pointer to
an indirect address at which the base may be found. Each addressing mode has a special operand field syntax
for specifying the addressing mode to the assembler. It selects the opcode that will correctly instruct the
processor where to find both the base and index.

Some early processors (the 6800, for example) had only one index register; moving data from one array
to another required saving off the first index and loading the second before accessing the second array, then
incrementing the second index and saving it before reloading the first index to again access the first array. The
65x processors were designed with two index registers so data can be quickly moved from an array indexed by
one to a second array indexed by the other.
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2
|_
X
e
g Correct Result
on 65816
$4000 [
| Index=
$FFFF $3000 /.
=
Base =
O $C000
X
Z “Wrapped” result
é on 65802
$4000
$0000

Figure 7-5 Indexing Beyond the End of the Bank

Often, the index registers are used simultaneoudly as indexes and as counters within loops in which consecutive
memory locations are accessed.

The 65802 and 65816 index registers can optionally specify sixteen-bit offsets into an array, rather than
eight-bit offsets, if the x index register select flag is clear when an indexed addressing mode is encountered.
This lets simple arrays and other structured data elements be as large as 64K.

On the 6502, 65C02, and 65802, if an index plus its base would exceed $FFFF, it wraps to continue
from the beginning of the 64K bank zero; that is, when index is added to base, any carry out of the low-order
sixteen bitslost. (SeeFigure 7.5.)

On the 65816, the same is true of direct page indexing: because the direct page is always located in
bank zero, any time the direct page, plus an offset into the direct page, plus an index exceeds $FFFF, the
address wraps to remain in bank zero.

But as Figure 7.5 shows, whenever a 65816 base is specified by a 24-bit (long) address, or the base is
specified by sixteen bits and assumes the data bank as its bank, then, if an index plus the low-order sixteen bits
of its base exceeds $FFFF, it will temporarily (just for the current instruction) increment the bank. The 65816
assumes that the array being accessed extends into the next bank.

Absolute Indexed with X and Absolute Indexed with Y Addressing

Absolute addresses can be indexed with either the X (referred to as Asolute, X addressing) or the Y
(referred to as AbsoluteY addressing) index register; but indexing with X is available to haf again as many
instructions as indexing with Y.

The base in these modes is specified by the operand, a sixteen-bit absolute address in the current data
bank (Figure 7.6). The index is specified by the value in the X or Y register; the assembler picks the correct
opcode on the basis of which index register the syntax specifies.
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In Fragment 7.4, the X register is used to load the accumulator from $2200 plus 5, or $2205. If run on
the 65816 in native mode, then if the accumulator is set to sixteen-bit mode, two bytes will be loaded from
$2205 and $2206 in the current data bank.

0000 A20500 LDX #5 load an index value of five
0003 BD0022 LDA $2200,X load the accumulator from $2205
Fragment 7.4

If the 65816 isin native mode and the index registers are set to sixteen-bit mode, indexes greater than
$FF can be used, as Fragment 7.5 illustrates.

0000  A00501 LDY #$105 load an index value of $105
0003 B90022 LDA $2200,Y load the accumulator from $2305
Fragment 7.5

If the index register plus the constant base exceeds $FFFF, the result will continue beyond the end of
the current 64K data bank into the next bank (the bank byte of the 24-bit address is temporarily incremented by
one). So an array of any length (up to 64K bytes) can be started at any location and absolute indexed addressing
will correctly index into the array, even across a bank boundary. 65802 arrays, however, wrap at the 64K
boundary, since effectively thereis only the single 64K bank zero.

Loading the index register with an immediate constant, as in the previous two examples, is of limited
use: if, when writing a program, you know that you want the accumulator from $2305, you will generate far
fewer bytes by using absolute addressing:

ADO0523 LDA  $2305 load the accumulator from $2305
The usefulness of indexed addressing becomes clear when you don’t know, as you write a program, what the

index into the array will be. Perhaps the program will select among indexes, or calculate one, or retrieve it from
avariable, asin Fragment 7.6.
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Effective Address:

23 15 7 0
| Bank | High | Low
Instructions:
| Opcode | OperandLow | Operand High |
65816 Registers:
Bank High Low
23 15 7 0
| DataBank (DBR) |
+ |
Index | Register |
—— x=1 }7
x=0
Figure 7-6 Absolute Indexing with a Generic Index Register
0000 AEO0600 LDX INDEX get previoudly calculated index from memory
0003 BDO0022 LDA $2200,X load the accumulator from the array, X
0006
0006
0006 .
0006 0000 INDEX DS 2

Fragment 7.6.

It can be useful to be able to put the base of an array into the index register and let it vary, while
keeping the index into the array constant. This is seldom possible with the eight bits of the 6502’ s and 65C02's
index registers, since they limit the base addresses they can hold to the zero page, but it is a useful capability of
the 65802 and 65816.

For example, suppose, as in Fragment 7.7, you're dealing with dozens (or hundreds) of records in
memory. You need to be able to update the fifth byte (which is a status field) of an arbitrary record. By loading
the base address of the desired record into an index register, you can use a constant to access the status field.
The index into the array, five, isfixed; the array base varies.

Because the index is less than $100, the assembler would normally generate direct page indexing. To
force the assembler to generate absolute indexing, not direct page indexing, you must use the vertical bar (or
exclamation point) in front of the five, as Fragment 7.7 shows. That way, the five is generated as the double-
byte operand $0005, an absolute address to which the address in the index register is added to form the absolute
effective address.
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0000 STATUS GEQU 5

0000 OK GEQU 1

0000 BAD GEQU 0

0000

0000 18 CLC

0001 FB XCE

0002

0002 C210 REP #$10 set index registers to 16 bits

0004 LONGI ON

0004

0004 E220 SEP #$20

0006 LONGA OFF

0006

0006  AEOEQO LDX REC get location of record to update

0006  AEOEOO LDX #OK load A with ok status token

0009 A901 LDA ISTATUSX  storeto statusfield

000B  9D0500 STA force absolute, X addressing

00OE ;

000E

000E

000E .

000E 0030 REC DC a $3000° loc of 1% record (in data bank)
Fragment 7.7

Had the Y index register been used instead of the X in Fragment 7.7, the vertical bar would have been
acceptable but not necessary; direct page, Y addressing, as you will learn in the next section, can only be used
with the LDX and STX instructions, so the assembler would have been forced to use absoluteY addressing
regardless.

Both absolute, X and absolute)Y can be used by what are caled the eight Group | instructions, the
memory-to-accumulator instructions which can use more addressing modes than any others: LDA, STA, ADC,
SBC, CMP, AND, ORA, and EOR. In addition, absolute, X can be used for shifting data in memory,
incrementing and decrementing data in memory, loading the Y register, and for other instructions; but
absolute,Y has only one other use —to load the X register.

Direct Page Indexed with X and Direct Page Indexed with Y Addressing

Arrays based in the direct page (the zero page on the 6502 and 65C02) can be indexed with either the X
register (called Direct Page, X addressing) or the Y register (called Direct Page,Y addressing). However, direct
page,Y addressing is available only for the purpose of loading and storing the X register, while direct page X is
full-featured.

As is standard with indexed addressing modes, the index, which is specified by the index register, is
added to the array base specified by the operand. Unlike the absolute indexed modes, array always starts in the
direct page. So the array base, a direct page offset, can be specified with a single byte. The sum of the base and
the index, a direct page offset, must be added to the value in the direct page register to find its absolute address,
asshownin Figure 7.7.

In Fragment 7.8, the accumulator is loaded from a direct page offset base of $32 plus index of $10, or
an offset of $42 from the direct page register’s setting.

0000 A21000 LDX #3$10 set up an index of $10
0003 B532 LDA $32,X load accumulator from dp:$42
Fragment 7.8

Remember that the effective address is an offset of $42 from the direct page register and is always in
bank zero. It will correspond to an absolute address of $0042 only when the direct page register is equal to zero
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(the default here in this chapter). Chapter 11, which covers the complex addressing modes, details relocation of
the direct page.

When the index registers are set to eight bits, you can code the index and the array base interchangeably
— they are both the same size. So the index, if it is a constant, may be specified as the operand, with the array
base in the index register. Using the last example, the $10 in the index register could be the direct page base of
the array; the operand, $32, would then be the index into an array in the direct page which begins at the direct
page offset $10.

On the 6502 and 65C02, and in they 6502 emulation modes of the two sixteen-bit processors, indexing
past the end of the direct page wraps to the beginning of the direct page, as Fragment 7.9 shows. The index and
the direct page array base are added, but only the low eight bits of the sum specify the direct page offset of the
effective address. So in Fragment 7.9, while the base of $32 plus the index of $F0 equals $122, only the $22 is
kept, and the accumulator is loaded from dp:$22.

A2FO LDX #$FO set up an index of $F0
B532 LDA $32,X load accumulator from dp:$22
Fragment 7.9

In 65802 and 65816 native mode, however, indexes can be sixteen bits, so direct page indexing was
freed of the restriction that the effective address be within the direct page. Arrays always start in the direct
page, but indexing past the end of the direct page extends on through bank zero, except that it wraps when the
result is greater than $FFFF to remain in bank zero (unlike absolute indexing, which temporarily allows access
into the next higher bank).

Effective Address:

23 15 7 0
| Bank | High | Low |
Instruction: 00 0O0OOODO
[ Opcode | Operand |
—T
65816 Registers:
Bank High Low
23 15 7 0 +H —
[ 0000 0000 | Direct | Page Register (D) |
+
Index | Register |
x=1
x=0

Figure 7-7 Direct Page Indexing with a Generic Index Register

In Fragment 7.10, the accumulator is loaded from the value in the direct page register plus the direct
page base of $12 plusindex of $FFFO, or dp:$0002. Note thisisin bank zero, not bank one.
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0000 C230 REP #3$30 set index and accumulator 16-bit modes
0002 LONGA ON

0002 LONGI ON

0002

0002

0002 A2FOFF LDX #SFFFO

0005 B512 LDA $12,X load accum from $0002

Fragment 7.10

If the index registers are set to sixteen bits and the array indexes you need to use are all known
constants less than $100, then you can use direct page indexing to access arrays beginning, not just in the direct
page, but anywhere in bank zero memory: load the index register with the sixteen-bit base of the array and
specify the index into the array as the operand constant. This technique would generally only be useful if the
direct page register hasits default value of zero.

Accumulator Addressing

Accumulator addressing is only available for the read-modify-write instructions such as shifts and
rotates. The instructions themselves will be explained in subsequent chapters, and use of accumulator
addressing with them will be reviewed in detail.

As a simple addressing mode, accumulator addressing is included in this chapter for the sake of
completeness even though the instructions which use it have not yet been introduced.

Generally, most operations take place upon two operands, one of which is stored in the accumulator, the
other in memory, with the result being stored in the accumulator. Read-modify-write instructions, such as the
shifts and rotates, are “unary” operations; that is, they have only a single operand, which in the case of
accumulator addressing, is located in the accumulator. There is no reference to external memory in the
accumulator addressing modes. As usual, the result is stored in the accumul ator.

The syntax for accumulator addressing, using the ASL (arithmetic shift |eft) instruction as an example,
is:

OA ASL A
Implied Addressing

In implied addressing, the operand of the instruction is implicit in the operation code itself; when the
operand is a register, it is specified in the opcode’s mnemonic. Implied operand instructions are therefore
single-byte instructions consisting of opcode only, unlike instructions that reference external memory and as a
result must have operands in subsequent bytes of the instruction.

You have already encountered implied addressing in the previous chapter in the form of the register
transfer instructions and exchanges. Since there are a small number of registers, it is possible to dedicate an
opcode to each specific registers transfer operation. Other instructions that use implied addressing are the
register increments and decrements.

As one-byte ingtructions, there is no assembler operand field to be coded: You simply code the
assembler mnemonic for the given instruction, as below:

7B TDC transfer direct page register to double accumulator
AA TAX transfer A to X
9B XY transfer X to'Y
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Stack

Stack addressing references the memory location pointed to by the stack register. Typical use of the
stack addressing mode is via the push and pull instructions, which add or remove data to or from the stack area
of memory and which automatically decrement or increment the stack pointer. Examples of the use of push and
pull instructions were given in the previous chapter.

Additionally, the stack is used by the jump to subroutine, return from subroutine, interrupt, and return
from interrupt instructions to automatically store and retrieve addresses and in some cases also the status
register. This form of stack addressing will be covered in Chapter 12, Subroutines, and Chapter 13, System
Control.

The assembler syntax of the push and pull instructions is similar to that of implied instructions; no
operand field is coded, since the operation will always access memory at the stack pointer location.

Direct Page Indirect Addressing

Direct page indirect addressing, or, asit is known on the 65C02, zer o page indirect, is unavailable on
the 6502; it was first introduced on the 65C02.

Indirect addressing was designed for the 65C02 as a simplification of two often-used complex forms of
addressing available on the 6502 known as zero page indirect indexed and zero page indexed indirect
addressing (these forms of addressing on the 65816 are of course direct page indirect indexed or indexed
indirect addressing; they are explained in Chapter 11, Complex Addressing Modes). It was found that
programmers were tolerating the overhead inherent in these two complex addressing modes to simulate
indirection.

The concept of simple indirect addressing lies on the borderline between the simple and complex
addressing modes. An understanding of it forms the basis for understanding several of the more complex
indexed modes which use indirection as well.

An indirect address is an address stored in memory which points to the data to be accessed; it is
located by means of the operand, an address which points to the indirect address, as shown in Figure 7.8.
Except in the case of indirect jump instructions, explained in Chapter 8, Flow of Control, this pointer is aways
adirect page address.

The use of indirect addresses brings great flexibility to the addressing options available to you. There
is, however, a penalty in execution speed, imposed by the fact that, in addition to the operand fetch from the
code stream, the actual effective address must also be fetched from memory before the data itself can be
accessed. For this reason, direct page addresses are used as the pointers to the indirect addresses since, as you
will remember from the discussion of direct page addressing, the direct page offset itself can be determined with
only a single memory fetch.

The syntax for indirect addressing is to enclose in parentheses, as the operand, the direct page pointer to
the indirect address.

B280 LDA ($80)

This means, as figure 7.8 illustrates, “go to the direct page address $80 and fetch the absolute (sixteen-bit)
address stored there, and then load the accumulator with the data at the address.” The low-order byte of the
indirect addressis stored at dp:$80, the high-order byte at dp:$81 — typical 65x low/high fashion. Remember, in
the default case where DP equals $0000, the direct page address equals the zero page address, namely
$00:0080.

As explained above, the indirect address stored at the direct page location (point to by the instruction
operand) is a sixteen-bit address.
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Effective Address:

23 15 7 0
| Bank | High | Low
Instruction:
| Opcode | Operand |
|
65816 Registers:
Bank High Low
23 15 7 0
| DataBank (DBR) |
| N
—»| HighIndirect Address
R —— +1
! i i I Low Indirect Address
, 0000 0000 Direct |Page Register (D) 1 L
Bank O

Figure 7-8 Direct Page Indirect Addressing

The genera rule for the 65816 is that when an addressing mode only specifies sixteen hits of the
address, then the bank byte (bits 16-23) of the address is provided by the data bank register. This rule applies
here; but you must first note that the direct page offset which points to the indirect address is itself aways
located in bank zero because the direct page itself is always located in bank zero. The examples, however, were
simplified to assume both the data bank and the direct page register to by zero.

The use of indirect addressing allows an address that is referenced numerous times throughout a routine
and is subject to modification — for example, a pointer to a data region — to be modified in only one location and
yet alter the effective address of many instructions.

In Listing 7.1, the data $1234 is moved from location VAR1 to VAR2. Note that the load and store
instructions had the same operand: the symbol DPA, which had been given avalue of $80. The indirect address
stored at that location was different in each case, however, resulting in the data being copied from one location
to another. While this example in itself is an inefficient way to move a double-byte word to another location, it
does illustrate the basic method of indirect addressing, which will become quite useful as looping and counting
instructions are added to your working set of 65x instructions.

Absolute Long Addressing

This is the first of the simple addressing modes that are available only on the 65816 and 65802
Pprocessors.

Absolute long addressing is an extension of (sixteen-bit) absolute addressing — that is, addressing a a
known location. Remember that on the 6502 and 65C02, address space is limited to 64K, and any location
within the entire memory range can be specified with a sixteen-bit address. Thisis not the case with the 65816,
which can address up to sixteen megabytes of memory. Thus 24 bits are required to specify a given memory
location.

In general, there are two ways by which a 24-bit data address is generated. In the case of sixteen-bit
absolute addressing, a 64K memory context is defined by the value of the data bank register; the bank byte of
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the 24-bit address is derived directly from that register via simple concatenation (connecting together) of the
data bank value and the sixteen-bit address. The alternative method is to specify a complete 24-bit effective
address for a given instruction. The absolute long address-bit effective address for a given instruction. The
absolute long addressing mode is one of the means for doing this.

As the name should imply, this addressing mode specifies a known, fixed location within the sixteen-
megabyte addressing space of the 65816, just as sixteen-bit absolute addressing specifies a known, fixed
location within either the 64K space of the 6502, 65C02,
or 65802, or else the 64K data space determined by the 65816's data bank register. Just as the sixteen-bit
absolute addressing operations are three-byte instructions, consisting of opcode, address low, and address high,
the instructions that use the 24-bit absolute long addressing modes are four-byte instructions, comprised of
opcode, low byte of address, high byte of address, and bank byte of address, as shown in Figure 7.9. The value
in bits 8-15 of the effective address is described as the high byte, and 16-23 as the bank byte, because this most
clearly reflects both the parallels with the 6502 and 65C02 and bank-oriented memory segmentation of the
65816 architecture.
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0001 0000 KEEP KL.7.1
0002 0000
0003 0000 65816 ON
0004 0000
0005 0000 MAIN START
0006 0000
0007 0000 DPA EQU $80 give memory cell at $80 alabel
0008 0000
0009 0000 ; switch from 6502 emulation to native mode
0010 0000
0011 0000 18 CLC clear carry flag
0012 0001 FB XCE exchange carry with e bit (clear e bit)
0013 0002
0014 0002 C230 REP #$30 set 16-bit registers
0015 0004 LONGA ON
0016 0004 LONGI ON
0017 0004
0018 0004 A01500 LDY #VAR1 get the address where $1234 is stored
0019 0007 84380 STY DPA and store it as an indirect address at $80
0020 0009 8280 LDA (DPA) now load $1234 indirectly
0021  00OB A01700 LDY #VAR2 change the indirect address DPA
0022  OO0OE 8480 STY DPA to point to VAR2
0023 0010 9280 STA (DPA) and store $1234 by overwriting the $0000 there
0024 0012
0025 0012 ; return to 6502 emulation mode
0026 0012
0027 0012 38 SEC set carry flag
0028 0013 FB XCE exchange carry with e bit (set e bit)
0029 0014
0030 0014 60 RTS
0031 0015
0032 0015 3412 VARL DC A’'$1234
0033 0017 0000 VAR2 DC A’000’
0034 0019
0035 0019 END
Listing 7.1

When absolute long addressing is used, the bank address in the operand of the instruction temporarily
overrides the value in the data bank register for the duration of a single instruction. Thus, it is possible to
directly address any memory location within the entire sixteen-megabyte address space.

You will likely find, however, that this form of addressing is one of the less frequently used. There are
two reasons for this: first, it is more efficient to use the shorter sixteen-bit addressing modes, provided that the
data bank register has been appropriately set; second, it is generaly undesirable to hard code fixed 24-bit
addresses into an application, as this tends to make the application dependent on being run in a fixed location
within a fixed bank. (An exception to this is the case where the address referenced is an 1/0 location, which is
fixed by the given system hardware configuration.)

The 65x processors, in general, do not lend themselves to writing entirely position-independent code,
although the 65816 certainly eases this task compared to the 6502 and 65C02. There is, however, no reason
why code should not be written on the 65816 and 65802 to be bank-independent — that is, capable of being
executed from an arbitrary memory bank. But using absolute long addressing will tend to make this difficult if
not impossible.

If you are using a 65802 in an existing system, it is important to note that although the address space of
the 65802 is limited to 64K at the hardware level, internally the processor still works with 24-bit addresses.
One thing this means is that it is legal to use the long addressing modes such as absolute long. But using them
isfutile, even wasteful: an extra address byte is required for the bank, but the bank address generated is ignored.
There are cases where use of forms of long addressing other than absolute long should be used if you are
targeting your code for both the 65802 and the 65816. But generally thereis little reason to use the absolute
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long addressing mode on the 65802, except perhaps for fine-tuning a timing loop (the absolute long addressing
mode requires and extra cycle to execute in order to fetch the bank address in the fourth byte of the instruction).
The assembler syntax to indicate the absolute long addressing mode is simply to code a vaue in the
operand field greater than $FFFF. To force long addressing for bank zero addresses ($00:0000 to $00:FFFF),
use the greater sign (>) as a prefix to the operand (smilar to the use of the vertical bar to force sixteen-bit
absolute addressing) as shown in Fragment 7.11.
Effective Address:
23 15 7 0
| Bank | High | Low

Instruction:
| Opcode | OperandLow | OperandHigh | Operand Bank |

Figure 7-9 Absolute Long Addressing

Note that the first STA instruction in Fragment 7.11 generates a four-byte instruction to store the
accumulator to a bank zero address, while the second ST A instruction generates a three-byte instruction to store
the accumulator to the same sixteen-bit displacement but within bank two, the current data bank. Also note that
for both the load and the first store instructions, absolute long addressing causes the current data bank register,
which is set to two, to be overridden.

0000 E220 SEP #$20 set 8 bit accumulator

0002 LONGA OFF

0002

0002  A902 LDA #302 set data bank

0004 48 PHA to bank two

0005 AB PLB

0006

0006  AF9DA303 LDA $03A39D absolute long at $03:A39D
0O00A  8F7F2EQ00 STA >$2ETF store data to $00:2E7F
O00CE 8D7F2E STA $2E7F store data to $02:2E7F

Fragment 7.11

Absolute Long Indexed with X Addressing

Absolute long indexed with X, or absolute long indexed, uses the X register for its index, and an
absolute long address as its base. It lets you index into an array located in a bank other than the data bank.

Instructions using absolute long indexed addressing are four bytes in length, since three bytes are
needed to express 24-bit absolute-long operands. The bank byte, being the highest byte in the operand, is the
fourth byte of the instruction. The contents of the X index register are added to the absolute-long operand to
form the 24-bit effective address at which data will be accessed.

For example, Fragment 7.12 gets a character from atext buffer starting at $3000 in bank zero and stores
it into buffers starting at $1000 in bank two and at $E000 in bank three. Because the character to be loaded isin
bank zero, its long address is expressed in sixteen bits. You must preface a reference to it with the greater-than
sign to override the assembler assumption that a sixteen-bit operand is in the data bank, and force the assembler
to instead use long addressing. The next instruction stores to the data bank, requiring only absolute indexing;
the assembler assumes simple sixteen-bit operands are located in the data bank. Finally, storing into bank three
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requires no special specification: since $03E000 cannot be expressed in sixteen bits, long addressing is
assumed.

0000 E220 SEP #$20 set accumulator to 8 bits
0002 LONGA OFF

0002 C210 REP #$10 set indexes to 16 bits

0004 LONGI ON

0004

0004  A902 LDA #2 set the data bank to bank 2
0006 AB48 PHA

0007 AB PLB

0008

0008  AEO0080 LDX BUFIDX get 16 bit buffer index

000B  BF003000 LDA >$3000,X force long indexed abbr:bank0
000OF 9D0010 STA $1000,X store into data bank (bank 2)
0012 9FOOEO003 STA $O3E000,X store into bank 3

Fragment 7.12
Direct Page Indirect Long

Direct page indirect long is another case of long (24-bit) addressing, where the effective address
generated temporarily overrides the current value in the data bank register. Unlike the previous two long
addressing modes, however, the 24-bit address is not contained in the operand itself. The instruction is two
bytes long, much like regular direct page indirect addressing. The operand of the instruction is, like its non-long
counterpart, a direct page offset acting as an indirect pointer; the difference in this case is that rather than
pointing to a sixteen-bit address in the data bank, it points to a 24-bit address. If, for example, the direct page
address is $80, as in Figure 7.10, the processor will fetch the low byte of the effective address from dp:$80, the
high byte from dp:$81, and the bank byte from dp:$82. The bank byte temporarily overrides the value in the
data bank register.

Fragment 7.13 shows the use of both direct page indirect addressing and direct page indirect long, using
the latter to access the data as set up in Figure 7.10. The syntax for indirect long addressing is similar to that for
direct page indirect, except left and right square brackets rather than parentheses enclose the direct page address
to indicate the indirect addressis long.

In this example, a sixteen-bit accumulator size is used with eight-bit index registers. The
simultaneous availability of both an eight-bit and a sixteen-bit register in this mode simplifies the manipulation
of long addresses. First, a value of $04 is loaded into the eight-bit Y register using immediate addressing.
Since the LONGI OFF directive has been coded, the assembler automatically generates an eight-bit operand
for thisinstruction. Thisis pushed onto the stack, and then pulled into the bank register. Next, Y isloaded with
#3$02, the bank component of the indirect address, which is stored to dp:$82. The sixteen-bit accumulator is
then used to load an immediate $2000 (high/low of the indirect and the indirect long addresses), which is stored
at dp:$80. This results in the following values in memory: at dp:$80 is $00, at dp:$81 is $20, and at dp:$82 is
$02. The data bank register contains the indirect address $2000, while the memory at locations dp:$80.81
contains the indirect address $2000, while the memory at locations dp:$80.82 contains the indirect long address
$02:2000. The load indirect instruction uses the data bank register to form the bank address, and so loads
double-byte data from $04:2000. The store indirect long stores the double-byte data at $02:2000. The
overlapping of the low and high bytes of the indirect address in location dp:$80 and dp:$81 highlights the
difference in the source of the bank byte using the two addressing modes.
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Effective Address:
23 15 7 0
| Bank | High | Low

Instruction:
[ Opcode | Operand=$80 |
| | Bank Indirect Address
+ 2dp:$82
T 1dpgal High Indirect Address
0000 0000 ‘ Direct ‘ Page Register (D) ‘ + dp:$80 Low Indirect Address

Bank O

Figure 7-10 Direct Page Indirect Long Addressing

0000 C220 REP #$20 set accum/memory size to 16 bits
0002 LONGA ON

0002

0002 E210 SEP #$10 set index size to eight bits
0004 LONGI OFF

0004

0004 A004 LDY #$04 set data bank

0006 5A PHY to bank 4

0007 AB PLB

0008 ;

0008 A002 LDA #$02 bank of indirect address

OO0A 8482 STA $82

0ooC ;

000C  A90020 LDA #$2000  high/low of indirect address
OOOF 8580 STA $80

0011 ;

0011 B280 LDA ($80) load indirect from $04:2000
0013 8780 STA [$80] store indirect long to $02:2000

Fragment 7.13

Block Move

Block move addressing is a dedicated addressing mode, available only for two instructions, MVN and
MVP, which have no other addressing modes available to them. These operations were explained in the

previous chapter.
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8) Chapter Eight

The Flow of Control

Flow of control refersto the way in which a processor, as it executes a program, makes its way through
the various sections of code. Chapter 1 discussed four basic types of execution: straight-line, selection between
paths, looping, and subroutines. This chapter deals with those instructions that cause the processor to jump or
branch to other areas of code, rather than continuing the default straight-line flow of execution. Such
instructions are essential to selection and looping.

The jump and branch instructions alter the default flow of control by causing the program counter to
be loaded with an entirely new value. In sequential execution, on the other hand, the program counter is
incremented as each byte from the code stream — opcode or operand — is fetched.

The 65x processors have a variety of branch and jump instructions, as shown in Table 8.1. Of these,
when coding in the larger-than-64K environment of the 65816, only the three jumping-long instructions (jump
indirect long, jump absolute long, and jump subroutine long) and the return from subroutine long instruction are
capable of changing the program bank register — that is, of jumping to a segment of code in another bank. All
of the other branch or jump instructions smply transfer within the current bank. In fact, the interrupt
instructions (break, return from interrupt, and coprocessor instructions) are the only others which can change the
program bank; there is no direct way to modify the program counter bank without at the same time modifying
the program counter register because the program counter would still point to the next instruction in the old
bank.

Available on:
Mnemonic 6502 65C02 65802/816 Description

BEQ X X X branch on condition instruction
(eight)

JMP X X X jump absolute

JMP X X X jump indirect

JSR X X X jump subroutine absolute

RTS X X X return from subroutine

BRA X X branch always (unconditional)

JMP X X jump absolute indexed indirect

BRL X branch long always
(unconditional, 64K range)

JSR X jump to subroutine absolute
indexed indirect

JMP X jump indirect long (interbank)

JMP X jump absolute long (interbank)

JSL X jump subroutine long
(interbank)

RTL X return from subroutine long
(interbank)

Table 8-1. Branch and Jump Instructions

As you many have noticed, all of the flow-of-control instructions (except the return instructions) can be
divided into two categories: jump-type instructions and branch-type instructions. This division is based on
addressing modes: branch instructions use program counter relative addressing modes; jump instructions don'’t.

Jump instruction can be further split into two groups: those which transfer control to another section of
code, irreversibly, and those which transfer control to a subroutine, a section of code which is meant to
eventualy return control to the original (calling) section of code, at the instruction following the jump-to-
subroutine instruction.
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The jump instructions will be covered in this chapter first, then the branches; jump-to-subroutine
instructions will be discussed in Chapter 12, which deals with subroutines.

Jump Instructions

The jump inst
ruction (JMP) can be used with any one of five different 65816 addressing modes (only two of these are
available on the 6502, athird is available on the 65C02) to form an effective address; control then passes to that
address when the processor |oads the program counter with it. For example,

4C0020 JMP $2000 jump absolute to the code at location $2000

uses absolute addressing, a mode available to al 65x processors, to pass control to the code located at $2000 in
the current program bank. (Notice that using absolute addressing to access data in the last chapter used the data
bank in place of the program bank.)

In addition to absolute addressing, all of the 65x processors provide a jump instruction with absolute
indirect addressing. While this form of indirect addressing is unique to the jump instruction, it is quite smilar
to the direct page indirect addressing mode described in Chapter 7. In this case, the sixteen-bit operand is the
address of a double-byte variable located in bank zero containing the effective address; the effective address is
loaded into the program counter. As with absolute addressing, the program bank remains unchanged (Figure
8.1).

For example, the jump instruction in Fragment 8.1 causes the processor to load the program counter
with the value in the double-byte variable located at $00:2000. Unlike direct page indirect addressing, the
operand is an absolute address rather than a direct page offset. Furthermore, this form of absolute addressing is
unusual in that it always references a location in bank zero, not the current data bank.

0000 LONGA ON

0000 C220 REP #3$20 set 16-bit accumulator

0002 A93412 LDA #$1234  load sixteen-bit accumulator with$1234

0005 8F002000 STA >$2000 storelong to location $00:2000

0009 6C0020 JMP ($2000) jump to location $1234 in program bank
Fragment 8.1

The 65C02 added the absolute indexed indirect addressing mode to those available to the jump
instruction. This mode is discussed further in Chapter 12, The Complex Addressing Modes. Although its
effective address calculation is not as simple as the jump absolute or jump absolute indirect, its result is the
same: atransfer of control to a new location.

The 65802 and 65816 added long (24-bit) versions of the absolute and indirect addressing modes. The
absolute long addressing mode has a three-byte operand; the first two bytes are loaded into the program counter
as before, while the third byte is loaded into the program bank register, giving the jump instruction a full 24-bit
absolute addressing mode. For example,

5C4423FF IMP $FF2344
causes the program counter to be loaded with $2344 and the program bank counter with $FF. Note

that on that 65802, even though the bank address is effectively ignored; the jump is to the same
location as the equivalent (sixteen-bit) absolute jump.
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Effective Address:
23 15 7 0

| Bank | High | Low

| Program Bank (PBR) |

Instruction:
| Opcode | OperandLow | OperandHigh |

Low Indirect Address

’+—1> High Indirect Address }>
>

Bank O

Figure 8-1 Jump’s Absolute Indirect Addressing Mode

When the target of along jump isin bank zero, say to $00A030, then the assembler has a problem. It
assumes a jump to any address between zero and $FFFF (regardiess of whether it's written as $A030 or
$00A030) is a jump within the current program bank, not to another bank, so it will generate an absolute jump,
not along jump. There are two solutions. One is to use the greater-than sign (>) in front of the operand, which
forces the assembler to override its assumptions and use long addressing:

5C30A000 JMP >$A030 long jump from current program bank to $00:A030

The alternative is to use the IML dlias, or aternate mnemonic, which also forces a jump to be long, even if the
value of the operand is less than $10000:

5C30A000 JML $A030 jump from current bank to $00:A030

The final form of the jump instruction is a 24-bit (long) jump using absolute indirect addressing. In the
instruction,

DC0020 JMP [$2000] jump to the 24-bit address stored at $00:2000

the operand is the bank zero double-byte address $2000, which locates a triple-byte value; the program counter
low is loaded with the byte at $2000 and the program counter high with the byte at $2001; the program bank
register is loaded with the byte at $2002. A standard assembler will allow the IML (jump long) alias here as
well.

Notice that absolute indirect long jumps are differentiated from absolute indirect jumps within the same
bank by using parentheses for absolute indirect jumps within the same bank by using parentheses for absolute
direct and sgquare brackets for absolute indirect long. 1n both cases the operand, an absolute address, pointsto a
location in bank zero.

The jump instructions change no flags and affect no registers other than the program counter.
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Conditional Branching

While the jump instructions provide the tools for executing a program made up of digoined code
segments or for looping, they provide no way to conditionally break out of aloop or to select between paths.
These are the jobs of the conditional branch instructions.

The jump instruction requires a minimum three bytes to transfer control anywhere in a 64K range. But
selection between paths is needed so frequently and for the most part for short hops that using three bytes would
tend to be unnecessarily costly in memory usage. To save memory, branches use an addressing mode called
program counter relative, which requires just two bytes; the branch opcode is followed by a one-byte operand —
asigned, two’s-complement offset from the current program location.

When a conditional branch instruction is encountered, the processor first tests the value of a status
register flag for the condition specified by the branch opcode. If the branch condition is false, the processor
ignores the branch instruction and goes on to fetch and execute the next instruction from the next sequential
program location. If, on the other hand, the branch condition is true, then the processor transfers control to the
effective address formed by adding the one-byte signed operand to the value currently in the program counter
(Figure 8.2).

As Chapter 1 notes, positive numbers are indicated by a zero in the high bit (bit seven), negative
numbers by a one in the high bit. Branching is limited by the signed one-byte operands to 127 bytes forward or
128 bytes backward, counting from the end of the instruction. Because a new value for the program counter
must be calculated if the branch is taken, an extra execution cycle is required. Further, the 6502 and 65C02
(and 65802 and 65816 in emulation mode) require an additional cycle if the branch crosses a page boundary.
The native mode 65802 and 65816 do not require the second additional cycle, because they use a sixteen-bit
(rather than eight-bit) adder to make the calculation.

The program counter value to which the operand is added is not the address of the branch instruction
but rather the address of the opcode following the branch instruction. Thus, measured from the branch opcode
itself, branching is limited to 129 bytes forward and 126 bytes backward. A conditional branch instruction with
an operand of zero will continue with the next instruction regardless of whether the condition tested is true or
fase. A branch with an operand of zero is thus a two-byte no-operation instruction, with a variable (by one
cycle) execution time, depending on whether the branch is or isn't taken.

The 65x processors have eight instructions which let your programs branch based on the settings of four
of the condition code flag bits in the status register: the zero flag, the carry flag, the negative flag, and the
overflow flag.

None of the conditional branch instructions change any of the flags, nor do they affect any registers
other than the program counter, which they affect only if the condition being tested for istrue. The most recent
flag value always remains valid until the next flag-modifying instruction is executed.
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Effective Address:

23 15 7 0
| Bank | High | Low

Instruction:

Opcode Operand
65816 Registers: sign extended to 16 bits
Bank High Low
23 15 7 0
Program Bank (PBR) Program | Counter (PC) )

Figure 8-2. Relative Branch Calculation
Branching Based on the Zero Flag

The zero bit in the status register indicates whether or not the result of an arithmetic, logical, load, pull,
or transfer operation is zero. A zero result causes the bit to be set; a non-zero result causes the bit to be reset.

The BEQ instruction is used to branch when a result is zero — that is, when the zero bit is set. Its
mnemonic meaning, that of branch if equal (to zer o), describes what the processor does. Alternatively, it may
be considered a mnemonic for branch if (comparison) equal because it is often used after two values are
compared or subtracted; if the two values are equal, then the result of the comparison (subtraction) is zero (no
difference), and the branch is taken.

The BNE instruction is used to branch when a result is not zero. Also, any non-zero value which is
loaded into a register will clear the zero flag. It isamnemonic for branch if not equal; it too is used to branch
after a comparison or subtraction if the two values are not equal.

Zero is often used as a terminator, indicating the end list, or that aloop counter has counted down to the
end of the loop. Fragment 8.2 is a short routine to search for the end of alinked list of records, and then insert a
new element at the end. Each element in the list contains a pointer to the next element in the chain. The last
element in the chain contains a zero in itslink field, indicating that the end of the list has been reached.
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; traverse linked list searching for end of chain
0000
0000
0000  ACO0080 LDY NEXTNODE nextnode contains address of next
0003 ; data element to be inserted.
0003  A90080 LDA #ROOT ROOQOT contains the address of
0006 ; the link field of the first
0006 ; record in the chain.
0006 AA LOOP TAX use fetched address to bet next link
0007 B500 LDA 0,x
0009 DOFB BNE LOOP if not zero, use value to go to next
000B ; record
000B 98 TYA
000C 6500 STA 0,x store address of next record
OOOE ; inlink field of current record
O00E AA TAX
O00OF 7400 STZ 0,x now store zero to link field of
0011 ; new record, which is now end

Fragment 8.2

The routine hinges on the BNE instruction found half-way through the code; until the zero element is
reached. the processor continues looping through as many linked records as exist. Naotice that the routine has
no need to know how many elements there are or to count them as it adds a new element. Figure 8.3 pictures
such alinked list.
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$1204 X $1254 -
Data $1203 X $1253 -
$1202 X $1252 -

$1201 | $12 $1251 | $00 End
Link Field of
$1200 | $50 | $1250 | $00 List

|
|
|
|
|
|
|
I
| $1254 | Y $1304 -
Inserted Data | $1253 | Y $1303 -
| $1252 | Y $1302 -
|
| $1251 | $13 $1301 | $00
New Link Field | Nfe‘”L’.E”d
L___p $1250 | $00 $1300 | $00 || OfLis

Figure8-3. Linked List

The two conditional branch instructions that check the zero flag are aso frequently used following a
subtraction or comparison to evaluate the equality or inequality of two values. Their use in arithmetic, logical,
and relational expressions will be covered in more detail, with examples, in the next few chapters.

Branching Based on the Carry Flag

The carry flag in the status register is affected by addition, subtraction, and shift instructions, as well as
by two implied-addressing instructions that explicitly set or clear the carry (SEC and CLC) and, on the
65802/65816, by the emulation and carry swapping XCE instruction, and the SEP and REP instructions.

The BCC instruction (branch on carry clear) is used to branch when the carry flag is a zero. The BCS
instruction (branch on carry set) is used to branch when the carry flag is aone.

The carry flag bit is the only condition code flag for which there are explicit instructions both to clear
and to set it. (The decimal flag, which can also be set and cleared explicitly, is a mode-setting flag; there are no
instructions to branch on the status of the decimal flag.) This can come in handy on the 6502, which has no
branch-always instruction (only the non-relocatable absolute jump): branch-always can be faked by setting the
carry, then branching on carry set:

38 SEC set carry bit in status register
BOEB BCS NEWCODE always document a BCS being used as branch-always

Since the code which follows this use of the BCS instruction will never be executed due to failure of the
condition test, it should be documented as acting like a branch-always instruction.

The 6502 emulation mode of the 65802 and 65816 can be toggled on or off only by exchanging the
carry hit with the emulation bit; so the only means of testing whether the processor is in emulation mode or
native mode is to exchange the emulation flag with the carry flag and test the carry flag, as in Fragment 8.3.
Note that CL C, XCE, and BCS instructions themselves aways behave the same regardless of mode.
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0000

0000 .

0000 18 CLC shift to native mode

0001 FB XCE Swap previous emulation bit value into carry
0002 BOFC BCS EMHAND if was emulation, branch to emulation handler
0004 .

0004 . else processor in native mode

0004

0004

Fragment 8.3

Arithmetic and logical uses of branching based on the carry flag will be discussed in the next two
chapters.

Branching Based on the Negative Flag

The negative flag bit in the status register indicates whether the result of arithmetic, logical, load, pull,
or transfer operation is negative or positive when considered as a two’s-complement number. A negative result
causes the flag to be set; a zero or positive result causes the flag to be cleared. The processor determines the
sign of aresult by checking to see if the high-order bit is set or not. A two’s-complement negative number will
always have its high-order bit set, a positive number always has it clear.

The BMI (branch-minus) instruction is used to branch when aresult is negative, or whenever a specific
action needs to be taken if the high-order (sign) bit of a value is set. Execution of the BPL (branch-plus)
instruction will cause a branch whenever aresult is positive or zero —that is, when the high-order bit is clear.

The ease with which these instructions can check the status of the high order-bit has not been lost on
hardware designers. For example, the Applell keyboard is read by checking a specific memory location
(remember, the 65x processor use memory-mapped 1/0). Like most computer 1/O devices, the keyboard
generates ASCII codes in response to key presses. The code returned by the keyboard only uses the low-order
seven bits; this leaves the eight bit free to be used as a special flag to determine if a key has been pressed since
the last time akey was retrieved. To wait for a keypress, a routine (see Fragment 8.4) loops until the high-order
bit of the keyboard 1/O location is set.

0000 KEYBD GEQU $C000
0000 KSTRB  GEQU $C010
0000
0000 ; wait until a character is pressed at the keyboard
0000
0000 E230 SEP #$30 eight-bit words are used for 1/0
0002
0002 ADOOCO LOOP LDA KEYBD
0005 10FB BPL LOOP loop until high order bit is set
0007 8D10CO STA KSTRB  got one; reset keyboard
000A .
000A . continue execution having fetched key
000A . from keyboard
000A
Fragment 8.4

The STA KSTRB instruction that follows a successful fetch is necessary to tell the hardware that a key
has been read; it clears the high-order bit at the KEYBD location so that the next time the routine is called, it
will again loop until the next key is pressed.

Remember that the high-order or sign bit is always bit seven on a 6502 or 65C02 or, on the 65802 and
65816, if the register loaded is set to an eight-bit mode. If aregister being used an the 65802 or 65816 is set to
sixteen-bit mode, however, then the high bit — the bit that affects the negative flag — is bit fifteen.
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Branching Based on the Overflow Flag

Only four instructions affect the overflow (v) flag on the 6502 and 65C02: adding, subtracting, bit-
testing, and an instruction dedicated to explicitly clearing it. The 65802/65816's SEP and REP instructions can
set and clear the overflow flag as well. The next chapter will discuss the conditions under which the flag is set
or cleared.

The BVS instruction is used to branch when a result sets the overflow flag. The BVC instruction is
used to branch when aresult clears the overflow flag.

Additionally, there is a hardware input on the 6502, 65C02, and 65802 that causes the overflow flag to
be set in response to a hardware signal. This input pin is generally left unconnected in most personal computer
systems. Itismore likely to be useful in dedicated control applications.

Limitations of Conditional Branches

If you attempt to exceed the limits (+127 and —128) of the conditiona branches by coding a target
operand that is out of range, an error will result when you try to assemble it. If you should need a conditional
branch with a longer reach, one solution is to use the inverse branch; if you would have used BNE, test it
instead for equal to zero using BEQ. If the condition is true, target the next location past a jump to your red
target. For example, Fragment 8.5 shows the end of a fairly large section of code, at the point at which it is
necessary to loop back to the top (TOP) of the section if the value in location CONTROL is not equal to zero.
Y ou would use the code like Fragment 8.5 if TOP is more than 128 bytes back.

0000 ADO0080 LDA CONTROL
0003 FO003 BEQ DONE done processing; skip over loop back
0005 4C0080 JMP TOP control not equal to zero; loop again
0008 DONE ANOP go on to next phase of processing
0008 .
0008

Fragment 8.5

The price of having efficient two-byte short branches is that you must use five bytes to simulate a long
conditional branch.

Many timesit is possible and sensible to branch to another nearby flow of control statement and
use it to puddie-jump to your final target. Sometimes you will find the branch or jump statement you
need for puddle jumping already within your code because it’s not unusual for two or more segments
of code to conditionally branch to the same place. This method costs you no additional code, but you
should document the intermediate branch, nothing that it’s being used as a puddle-jump. Should you
changeit later, you won't inadvertently ater its use by the other branch.

Each of the 65x branch instructions is based on a single status bit. Some arithmetic conditions,
however, are based on more than one flag being changed. There are no branch instructions available for the
relations of unsigned greater than and unsigned less than or equal to, these relations can only be determined by
examining more than one flag bit. There are also no branch instructions available for signed comparisons, other
than equal and not equal. How to synthesize these options is described in the following chapter.

Unconditional Branching

The 65C02 introduced the BRA branch always (or unconditional branch) instruction, to the relief of
6502 programmers; they had found that a good percentage of the jump instructions coded were for short
distance within the range of a branch instruction.

Having an unconditional branch available makes creating relocatable code easier. Every program must
have a starting address, or origin, specified, which tells the assembler where in memory the program will be
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loaded. Thisis necessary so that the assembler will be able to generate the correct values for locations defined
by labels in the source code.

Consider Fragment 8.6, the beginning of a program that specifies an origin of $2000. In order to make
patching certain variables easier, they have been located right at the beginning of the program. When this
program is assembled, location $2000 holds a jump instruction, and the assembler gives its operand the value of
the location of BEGCODE, that is, $2005. If this program were then loaded at $2200, instead of $2000 as was
“promised” by the ORG directive, it would fail because the very first instruction executed, at $2200, would be
the jump to $2005. since the program has now been loaded at $2200, the contents of $2005 are no longer as
expected, and the program is in deep trouble.

By substituting an unconditional branch instruction for the jump, as in Fragment 8.7, the operand of the
branch is now a relative displacement (the value two), and the branch instruction will cause two to be added to
the current value of the counter program counter, whatever it may be. The result is that execution continues at
BEGCODE, the same relative location the jJump instruction transferred control to in the fixed-position version.

The code is now one byte shorter. Most importantly, though, this section of the

0000 ORG $2000
0000 MAIN START
0000  4C0500 JMP BEGCODE jump around data to beginning code
0003 77 DATA1l DC H77
0004 88 DATAZ2 DC H’' 88
0005 BEGCODE ANOP
0005
0005
0005
Fragment 8.6

program is now position-independent. If executed at $2000, the branch islocated at $2000; the program counter
value before the branch’s operand is added is $2002; the result of the addition is $2004, the location of
BEGCODE. Load and execute the program instead at $2200, and the branch is located at $2200; the program
counter value before the branch operand is added is $2202; the result of the addition is $2204, which is the new
location of BEGCODE.

0000 ORG $2000
0000 MAIN START
0000 8002 BRA BEGCODE branch around data to beginning code
0002 77 DATA1l DC H77
0003 88 DATAZ2 DC H’'88
0004 ADO0200 BEGCODE LDA DATA1l
0007
0007
0007
0007
Fragment 8.7

Because the operand of a branch instruction is aways relative to the program counter, its effective
address can only be formed by using the program counter. Programs that use branches rather than jump may be
located anywhere in memory.

6502 programmers in need of relocatability get around the lack of an unconditional branch instruction
by using the technique described earlier of setting a flag to a known value prior to executing a branch-on-that-
condition instruction.

Even with the unconditional branch instruction, however, relocatability can still be a problem if the
need for branching extends beyond the limits imposed by its eight-bit operand. There is some help available on
the 6502 and 65C02 in the form of the absolute indirect jump, which can be loaded with a target that is
calculated at run time.
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The 65802 and 65816 introduce the BRL unconditional branch long instruction. This is the only 65x
branch instruction which does not take an eight-bit operand: its operand, being sixteen bits, lets it specify a
target anywhere within the current 64K program bank. It is coded like any other branch, except that the target
label can be outside the range of the other branches. Obvioudly, a two-byte displacement is generated by the
assembler, making this branch a three-byte instruction. If the effective address that results when the sixteen-bit
displacement is added to the current program counter would extend beyond the 64K limit of the current program
bank.

The BRL instruction can replace entirely the absolute JMP instruction in a relocatable program; the
price is an extra execution cycle per branch.
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9) Chapter Nine

Built-In Arithmetic Functions

With this chapter you make your first approach to the heart of the beast: the computer as an automated
calculator. Although their applications cover a broad range of functions, computers are generally associated
first and foremost with their prodigious calculating abilities. Not without reason, for even in chapter oriented
applications such as word processing, the computer is constantly calculating. At the level of the word processor
itself, everything from instructions decoding to effective address generation is permeated by arithmetic or
arithmetic-like operations. At the software implementation level, the program is constantly calculating
horizontal and vertical cursor location, buffer pointer locations, indents, page numbers, and more.

But unlike dedicated machines, such as desk-top or pocket calculators, which are merely calculators, a
computer is a flexible and generalized system which can be programmed and reprogrammed to perform an
unlimited variety of functions. One of the keys to this ability lies in the computer’s ability to implement control
structures, such as loops, and to perform comparisons and select an action based on the result. Because this
chapter introduces comparison, the elements necessary to demonstrate these features are complete. The other
key element, the ability to branch on condition, was presented in the previous chapter. This chapter therefore
contains the first examples of these control structures, as they are implemented on the 65x processor.

Armed with the material presented in Chapter 1 about positiona notation as it applies to the binary and
hexadecimal number systems, as well as the facts concerning two’s-complement binary numbers and binary
arithmetic, you should posses the background required to study the arithmetic instructions available on the 65x
series of processors.

Consistent with the simple design approach of the 65x family, only elementary arithmetic functions are
provided, aslisted in Table 9.1, leaving the rest to be synthesized in software. There are, for example, no built-
in integer multiply or divide. More advanced examples presented in later chapters will show how to synthesize
these more complex operations.

Available on:
Mnemonic 6502 65C02 65802/816  Descri pti on
Increment Instructions:

DEC X X X decrement

DEX X X X decrement index register X

DEY X X X decrement index register Y

INC X X X increment

INX X X X increment index register X

INY X X X increment index register Y
Arithmetic Instructions:

ADC X X X add with carry

SBC X X X subtract with borrow

Compare with Memory Instructions:

CMP X X X compare accumul ator
CPX X X X compare index register X
CPY X X X compare index register Y

Table 9-1 Arithmetic Instructions
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I ncrement and Decr ement

The simplest of the 65x arithmetic instructions are increment and decrement. In the case of the 65x
processors, al of the increment and decrement operations add or subtract one to a number. (Some other
processors allow you to increment or decrement by one, two, or more.)

There are several reasons for having special instructions to add or subtract one to a number, but the
most general explanation says it all: the number one tends to be, by far, the most frequently added number in
virtually any computer application. One reason for this is that indexing is used so frequently to access multi-
byte data structures, such as address tables, character strings, multiple-precision numbers, and most forms of
record structures. Since the itemsin a great percentage of such data structures are byte or double-byte wide, the
index counter step value (the number of bytes from one array item to the next) is usually one or two. The 65x
processors, in particular, have many addressing modes that feature indexing; that is, they use a value in one of
the index registers as part of the effective address.

All 65x processors have four instructions to increment and decrement the index registers: INX, INY,
DEX, and DEY. They are single-byte implied operand instructions and either add one to, or subtract one from,
the X or Y register. They execute quite quickly — in two cycles — because they access no memory and affect
only asingle register.

All 65x processors also have a set of instructions for incrementing and decrementing memory, the INC
and DEC instructions, which operate smilarly. They too are unary operations, the operand being the data
stored at the effective address specified in the operand field of the instruction. There are several addressing
modes available to these two instructions. Note that, unlike the register increment and decrement instructions,
the INC and DEC instructions are among the slowest-executing 65x instructions. That is because they are
Read-M odify-Write operations: the number to be incremented or decremented must first be fetched from
memory; then it is operated upon within the processor; and, finaly, the modified value is written back to
memory. Compare this with some of the more typica operations, where the result is left in the accumulator.
Although read-modify-write instructions require many cycles to execute, each is much more efficient, both
byte- and cycle-wise, than the three instructions it replaces — load, modify, and store.

In Chapter 6, you saw how the load operations affected the n and z flags depending on whether the
loaded number was negative (that is, had its high bit set), or was zero. The 65x arithmetic functions, including
the increment and decrement operations, also set the n and z status flags to reflect the result of the operation.

In Fragment 9.1, one is added to the value in the Y register, $7FFF. The result is $8000, which, since
the high-order bit is turned on, may be interpreted as a negative two's-complement number. Therefore the n
flagis set.

0000 C230 REP #$30 16-hit registers

0002 LONGA ON

0002 LONGI ON

0002 AOFF7F LDY #S7TFFF $7FFF is a positive number

0005 C8 INY $8000 is a negative number;n=1
Fragment 9.1

In asimilar example, Fragment 9.2, the Y register is loaded with the highest possible value which can
be represented in sixteen bits (all bits turned on).

0000 C230 REP #$30

0002 LONGA ON

0002 LONGI ON

0002  AOFFFF LDY H#BFFFF

0005 C8 INY z =1 in dtatus register
Fragment 9.2
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If one is added to the unsigned value $FFFF, the result is $10000:

1 one to be added
+ 1111 1111 1111 1111 binary equivalent of $FFFF
1 0000 0000 0000 0000 result is $10000

Since there are no longer any extra bits available in the sixteen-bit register, however, the low-order
sixteen bits of the number in'Y (that is, zero) does not represent the actual result. Asyou will see later, addition
and subtraction instructions use the carry flag to reflect a carry out of the register, indicating that a number
larger than can be represented using the current word size (Sixteen bits in the above example) has been
generated. While increment and decrement instructions do not affect the carry, a zero result in the Y register
after an increment (indicated by the z status flag being set) shows that a carry has been generated, even though
the carry flag itself does not indicate this.

A classic example of this usage is found in Fragment 9.3, which shows the technique commonly used
on the eight-bit 6502 and 65C02 to increment a sixteen-bit value in memory. Note the branch-on-condition
instruction, BNE, which was introduced in the previous chapter, is being used to indicate if any overflow from
the low byte requires the high byte to be incremented, too. As long as the value stored at the direct page
location ABC is non-zero following the increment operation, processing continues at the location SKIP. If
ABC is zero as aresult of the increment operation, a page boundary has been crossed, and the high order byte of
the value must be incremented, the sixteen-bit value would “wrap around” within the low byte.

0000 EEO080 TOP INC ABC increment low byte
0003 DOFB BNE SKIP if no overflow, done
0005 EEO0180 INC ABC+1 if overflow: increment high byte, too
0008 SKIP . continue
0008
0008
0008
Fragment 9.3

Such use of the z flag to detect carry (or borrow) is peculiar to the increment and decrement operations:
if you could increment or decrement by values other than one, this technique would not work consistently, since
it would be possible to cross the “threshold” (zero) without actually “landing” on it (you might, for example, go
from $FFFF to $0001 if the step value was 2).

A zero result following a decrement operation, on the other hand, indicates that the next decrement
operation will cause a borrow to be generated. In Fragment 9.4, the Y register is loaded with one, and then one
is subtracted from it by the DEY instruction. The result is clearly zero; however, if Y is decremented again,
$FFFF will result. If you are treating the number as a signed, two’s-complement number, this is just fine, as
$FFFF is equivalent to a sixteen-bit, negative one. But if it is an unsigned number, a borrow exists.

0000 C230 REP #$30 16-bit registers

0002 LONGA ON

0002 LONGI ON

0002  A00100 LDY #$0001 z = 0inthe status register

0005 88 DEY z = 1in the status register
Fragment 9.4

Together with the branch-on-condition instructions introduced in the previous chapter, you can now
efficiently implement one of the most commonly used control structures in computer programming,, the
program loop.

A rudimentary loop would be a zero-fill loop; that is, a piece of code to fill a range of memory with
zeroes. Suppose, as in Listing 9.1, the memory area from $4000 to $5FFF was to be zeroed (for example, to
clear hi-res page two graphics memory in the Applell). By loading an index register with the size of the areato
be cleared, the memory can be easily accessed by indexing from an absolute base of $4000.
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The two lines at BASE and COUNT assign symbolic names to the starting address and length of the fill
area. The REP instruction puts the processor into the long index/long accumulator mode. The long index
allows the range of memory being zeroed to be greater than 256 bytes; the long accumulator provides for faster
zeroing of memory, by clearing two bytes with a single instruction.

The loop isinitidlized by loading the X register with the value COUNT, which is the number of bytes
to be zeroed. The assembler isinstructed to subtract two from the total to allow for the fact that the array starts
at zero, rather than one, and for the fact that two bytes are cleared at atime.
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0001 0000
0002 0000 KEEP KL.9.1
0003 0000 65816 ON
0004 0000 L91 START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002
0009 0002
0010 0002 BASE GEQU $4000 starting address of fill area
0011 0002 COUNT GEQU $2000 number of bytes to clear
0012 0002
0013 0002 C230 REP #$30 turn 16-bit modes on
0014 0004
0015 0004 LONGA ON
0016 0004 LONGI ON
0017 0004
0018 0004 A2FE1F LDX #COUNT-2  get the number of bytesto clear into x
0019 0007 ; minus two
0020 0007
0021 0007  9EO0040 LOOP STZ BASE X store zero to memory
0022 000A CA DEX
0023 000B CA DEX
0024 000C 10F9 BPL LOOP repeat loop again if not done
0025 000E
0026 O0OE 38 DONE SEC
0027 00OF FB XCE
0028 0010 60 RTS
0029 0011
0030 0011 END
Listing 9.1

The loop itself is then entered for the first time, and the STZ instruction is used to clear the memory
location formed by adding the index register to the constant BASE. Next come two decrement instructions; two
are needed because the ST Z instruction stored a double-byte zero. By starting at the end of the memory range
and indexing down, it is possible to use a single register for both address generation and loop control. A simple

comparison, checking to see that the index register is still positive, is all that is needed to control the loop.

Another concrete example of a program loop is provided in Listing 9.2, which toggles the built-in
speaker in an Applell computer with increasing frequency, resulting in atone of increasing pitch. It features an
outer driving loop (TOP), an inner loop that produces a tone of a given pitch, and an inner-most delay loop.
The pitch of the tone can be varied by using different initial values for the loop indices.
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0001 0000 KEEP KL.9.2
0002 0000 65816 ON
0003 0000
0004 0000 L92 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002 E230 SEP #$30 set 8-bit mode
0008 0004 LONGA OFF
0009 0004 LONGI OFF
0010 0004 BELL GEQU $C030
0011 0004
0012 0004 AZ200 LDX #0
0013 0006 8A TXA X, now in A, initializes the delay loop
0014 0007
0015 0007 9B TOP XY initializeX & Y to 0
0016 0008
0017 0008 8D30CO LOOP  STA BELL accessing the tone generator pulsesit
0018 000B
0019 000B 8A TXA diminishing delay loop
0020 000C
0021 000C 3A DELAY DEC A
0022 000D DOFD BNE DELAY loop 256 times before continuing
0023 00OF
0024 00OF
0025 O00F 88 DEY
0026 0010 DOF6 BNE LOOP
0027 0012
0028 0012 CA DEX
0029 0013 DOF2 BNE TOP
0030 0015
0031 0015 38 SEC
0032 0016 FB XCE
0033 0017 60 RTS
0034 0018 END
Listing 9.2

Addition and Subtraction: Unsigned Arithmetic

The 65x processors have only two dedicated general purpose arithmetic instructions. add with carry,
ADC, and subtract with carry, SBC. As will be seen later, it is possible to synthesize all other arithmetic
functions using these and other 65x instructions.

As the names of these instructions indicate, the carry flag from the status register is involved with the
two operations. The role of the carry flag is to “link” the individual additions and subtractions that make up
multiple-precision arithmetic operations. The earlier example of the 6502 sixteen-bit increment was a specia
case of the multiple-precision arithmetic technique used on the 65x processors, the link provided in that case by

the BNE instruction.

Consider the addition of two decimal numbers, 56 and 72. Y ou begin your calculation by adding six to
two. If you are working the calculation out on paper, you place the result, eight, in the right-most column, the

one's place:

56

72

8
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Next you add the ten’s column; 5 plus 7 equals 12. The two is placed in the tens place of the sum, and the one
isacarry into the 100's place. Normally, since you have plenty of room on your worksheet, you simply pencil
in the one to the left of the two, and you have the answer.

The situation within the processor when it adds two numbers is basically similar, but with a few
differences. First, the numbers added and subtracted in a 65x processor are normally binary numbers (although
there is also a specia on-the-fly decima adjust mode for adding and subtracting numbers in binary-coded
decimal format). Just as you began adding, the processor starts in the right-most column, or one’s place, and
continues adding columns to the left. The augend (the number added to) is always in the accumulator; the
location of the addend is specified in the operand field of the instruction. Since a binary digit can only be a zero
or a one, the addition of 2 ones results in a zero in the current column and a carry into the next column. This
process of addition continues until the highest bit of the accumulator has been added (the highest bit being
either bit seven or, aternatively on the 65802 / 65816, bit fifteen, if the m flag is cleared). But suppose that $32
is added to $AB in the eight-bit accumulator:

1 1 carry digits from previous addition to right
1000 0010 binary equivalent of $82
+ 1010 1011 binary equivalent of $AB
0010 1101

If you begin by adding the binary digits from the right and marking the sum in the proper column, and
then placing any carry that results at the top of the next column to the left, you will find that a carry results
when the ones in column seven are added together. However, since the accumulator is only eight bits wide,
there is no place to store this value; the result has “overflowed” the space alocated to it. In this case, the final
carry is stored in the carry flag after the operation. If there had been no carry, the carry flag would be reset to
zero.

The automatic generation of a carry flag at the end of an addition is complemented by a second feature
of thisinstruction that is executed at the beginning of the instruction: the ADC instruction itself always adds the
previously generated one-bit carry flag value with the right-most column of binary digits. Therefore, it is
always necessary to explicitly clear the carry flag before adding two numbers together, unless the numbers
being added are succeeding words of a multi-word arithmetic operation. By adding in a previous value held in
the carry flag, and storing a resulting carry there, it is possible to chain together several limited-precision (each
only eight or sixteen bits) arithmetic operations.

First, consider how you would represent an unsigned binary number greater than $FFFF (decimal
65,536) — that is, one that cannot be stored in a single double-byte cell. Suppose the number is $023A8EF1.
This would simply be stored in memory in four successive bytes, from low to high order, as follows, beginning
at $1000:

1000 - F1
1001 - 8E
1002 - 3A
1003 - 02

Since the number is greater than the largest available word size of the processor (double byte), any arithmetic
operations performed on this number will have to be treated as multiple-precision operations, where only one
part of a number is added to the corresponding part of another number at atime. As each part is added, and so
on, until al of the parts of the number have been added.

Multiple-precision operations always proceed from low-order part to high-order part because the carry
is generated from low to high, as seen in our original addition of decimal 56 to 72.

Listing 9.3 is an assembly language example of the addition of multi-precision numbers $023A8EF1 to
$O000A2C1. This example begins by setting the accumulator word size to sixteen bits, which lets you process
half of the four-byte addition in a single operation. The carry flag is then cleared because there must be no
initial carry when an add operation begins. The two bytes stored at BIGNUM and BIGNUM +1 are |oaded into
the double-byte accumulator. Note that the DC 14 assembler directive automatically stores the four-byte
integer constant value in memory in low-to-high order. The ADC instruction is then executed, adding $8EF1 to
$A2CL.
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0001 0000 KEEP KL.9.3
0002 0000 65816 ON
0003 0000
0004 0000 L93 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002 S220 REP #$20 use sixteen-bit accumul ator
0008 0004 LONGA ON
0009 0004 18 CLC make sure carry is clear to start
0010 0005 AD1A00 LDA BIGNUM load low-order two bytes
0011 0008 6D1EOO ADC NEXTNUM add to low-order two bytes of NEXTNUM
0012 000B 8D2200 STA RESULT save low-order result
0013 OO0CE AD1CO00 LDA BIGNUM+2 now load high-order two bytes
0014 0011 6D2000 ADC NEXTNUM+2  add to high order of NEXTNUM with carry
0015 0014 8D2400 STA RESULT+2 save result
0016 0017 38 SEC
0017 0018 FB XCE
0018 0019 60 RTS
0019 O001A F18E3A02 BIGNUM DC 14’ $023A8EFY’
0020 O001E C1A20000 NEXTNUM DC 14’ $0000A2CY’
0021 0022 00000000 RESULT DS 4
0022 0026 END
Listing 9.3

Examine the equivalent binary addition:
1 1 111 1 1 carry from addition of column to right
1000 1110 1111 0001 $8EF1
1010 0010 1100 0001 $A2C1
0011 0001 1011 0010 $31B2

The sixteen-bit result found in the accumulator after the ADC is executed is $31B2; however, this is clearly
incorrect. The correct answer, $13B2, requires seventeen bits to represent it, so an additional result of the ADC
operation in this case is that the carry flag in the status register is set. Meanwhile, since the value in the
accumulator consists of the correct low-order sixteen hits, the accumulator is stored at RESULT and
RESULT+1.

With the partia sum of the last operation saved, the high-order sixteen bits of BIGNUM are loaded
(from BIGNUM+2) into the accumulator, followed immediately by the ADC NEXTNUM + 2 instruction,
which is not preceded by CLC thistime. For al but the first addition of a multiple-precision operation, the
carry flag is not cleared; rather, the setting of the carry flag from the previous addition is allowed to be
automatically added into the next addition. Y ou will note in the present example that the high-order sixteen bits
of NEXTNUM are zero; it aimost seems unnecessary to add them. At the same time, remember that there was
a carry left over from the first addition; when the ADC NEXTNUM + 2 instruction is executed, this carry is
automatically added in; that is, the resulting value in the accumulator is equal to the carry flag (1) plus the
original value in the accumulator ($023A) plus the value at the address NEXTNUM + 2 ($0000), or $023B.
This is then stored in the high-order bytes of RESULT, which leaves the complete, correct value stored in
locations RESUL T through RESULT + 3 in low-high order:

RESULT - B2
RESULT+1 - 31
RESULT+2 - 3B
RESULT+3 - 02

Reading from high to low, the sum is $023B31B2.

This type of multiple precision addition is required constantly on the eight-bit 6502 and 65C02
processors in order to manipulate addresses, which are sixteen-bit quantities. Since the 65816 and 65802
provide sixteen-hit arithmetic operations when the m flag is cleared, this burden is greatly reduced. If you wish,
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however, to manipulate long addresses on the 65816, that is, 24-bit addresses, you will similarly have to resort
to multiple precision. Otherwise, it is likely that multiple-precision arithmetic generally will only be required
on the 65802 or 65816 in math routines to perform number-crunching on user data, rather than for internal
address manipulation.

An interesting footnote to the multiple-precision arithmetic comparison between the 6502 and the
65816 is to observe that since the 6502 only has an eight-bit adder, even those instructions that automatically
perform sixteen-bit arithmetic (such as branch calculation and affective address generation) require an
additional cycle to perform the addition of the high-order byte of the address. The presence of a sixteen-bit
adder within the 65802 and 65816 explains how it is able to shave cycles off certain operations while in native
mode, such as branching across page boundaries, where an eight-bit quantity is added to a sixteen-bit value. On
the 6502, if a page boundary isn’'t crossed, the high byte of the sixteen-bit operand is used as-is; if a carry is
generated by adding the two low bytes, a second eight-bit add must be performed, requiring an additional
machine cycle. On the 65816, the addition istreated as a single operation.

Subtraction on the 65x processors is analogous to addition, with the borrow serving a similar role in
handling multiple-precision subtractions. On the 65x processors, the carry flag is also used to store a
subtraction’s borrow. In the case of the addition operation, a one stored in the carry flag indicates that a carry
exists, and the value in the carry flag will be added into the next add operation. The borrow stored in the carry
flag is actually an inverted borrow: that is, the carry flag cleared to zero means that there is a borrow, while
carry set means that there is none. Thus prior to beginning a subtraction, the carry flag should be set so that no
borrow is subtracted by the SBC instruction.

Although you can ssimply accept this rule at face value, the explanation is interesting, The simple way to
understand the inverted borrow of the 65x series is to realize that, like most computers, a 65x processor has no
separate subtraction circuits as such; al it has is an adder, which serves for both addition and subtraction.
Obviously, addition of a negative number is the same as subtraction of a positive. To subtract a number, then,
the value which is being subtracted is inverted, yielding a one' s-complement negative number. This is then
added to the other value and, as is usual with addition on the 65x machines, the carry is added in as well.

Since the add operation automatically adds in the carry, if the carry is set prior to subtraction, this
simply converts the inverted value to two’'s complement form. (Remember, two's complement is formed by
inverting a number and adding one; in this case the added one is the carry flag.) If, on the other hand, the carry
was clear, this has the effect of subtracting one by creating a two’s-complement number which is one greater
than if the carry had been presented. (Assuming a negative number is being formed, remember that the more
negative a number is, the greater its vaue as an unsigned number, for example, $FFFF = -1, $8000 = -32767.)
Thus, if a borrow exists, a value which is more negative by one is created, which is added to the other operand,
effectively subtracting a carry.

Comparison

The comparison operation —is VALUE1L equal to VALUEZ2, for example — is implemented on the 65,
as on most processors, as an implied subtraction. In order to compare VALUE1L to VALUEZ2, one of the values
is subtracted from the other. Clearly, if the result is zero, then the numbers are equal.

This kind of comparison can be made using the instructions you aready know, as Fragment 9.5
illustrates. In this fragment, you can see that the branch to TRUE will be taken, and the INC VAL instruction
never executed, because $1234 minus 1234 equals zero. Since the results of subtractions condition the z flag,
the BEQ instruction (which literally means “branch if result equal to zero”), in this case, means “branch if the
compared values are equal .”
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0000 C230 REP #3$30 16-bit registers
0002 LONGA ON
0002 LONGI ON
0002
0002 9C1200 STZ VAL clear double-byte at VAL
0005 A93412 LDA #$1234  get onevalue
0008 38 SEC
0009 E93412 SBC #$1234  subtract another
000C F003 BEQ TRUE if they are the same, leave VAL zero
000E EE1200 INC VAL if they are different, set VAL
0011 60 TRUE RTS
0012 0000 VAL DS 2
Fragment 9.5

There are two undesirable aspects of this technique, however, if comparison is al that is desired rather
than actual subtraction. First, because the 65x subtraction instruction expects the carry flag to be set for single
precision subtractions, the SBC instruction must be executed before each comparison using SBC. Second, it is
not always desirable to have the original value in the accumulator lost when the result of the subtraction is
stored there.

Because comparison is such a common programming operation, there is a separate compare instruction,
CMP. Compare subtracts the value specified in the operand field of the instruction from the value in the
accumulator without storing the result; the original accumulator value remains intact. Status flags normally
affected by a subtraction — z, n, and ¢ — are set to reflect the result of the subtraction just performed.
Additionaly, the carry flag is automatically set before the instruction is executed, as it should be for a single-
precision subtraction. (Unlike the ADC and SBC instructions, CMP does not set the overflow flag,
complicating signed comparisons somewhat, a problem which will be covered later in this chapter.)

Given the flags that are set by the CM P instruction, and the set of branch-on-condition instructions, the
relations shown in Table 9.2 can be easily tested for. A represents the value in the accumulator, DATA is the
value specified in the operand field of the instruction, and Bxx is the branch-on-condition instruction that causes
a branch to be taken (to the code labelled TRUE) if the indicated relationship is true after a comparison.

Because the action taken after a comparison by the BCC and BCS is not immediately obvious from
their mnemonic names, the recommended assembler syntax standard allows the alternate mnemonics BLT, for
“branch on less than,” and BGE, for

BEQ TRUE branchif A = DATA
BNE TRUE branchif A <> DATA
BCC TRUE branchif A <DATA
BCS TRUE branchif A >=DATA

Table 9-2. Equalities

“branch if greater of equal,” respectively, which generate the identical object code.
Other comparisons can be synthesized using combinations of branch-on-condition instructions.
Fragment 9.6 shows how the operation “branch on greater than” can be synthesized.

0000 F002 BEQ SKIP branch to TRUE if
0002 BOFC BGE TRUE A >DATA
0004 SKIP  ANOP

Fragment 9.6

Fragment 9.7 shows “branch on less or equal.”
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0000 FOFE BEQ TRUE branch if
0002 90FC BCC TRUE A <=DATA
Fragment 9.7

Listing 9.4 features the use of the compare instruction to count the number of elements in a list which
are less than, equal to, and greater than a given value. While of little utility by itself, this type of comparison
operation is just a few steps away from a smple sort routine. The value the list will be compared against is
assumed to be stored in memory locations $88.89, which are given the symbolic name VAL UE in the example.
Thelist, called TABLE, usesthe DC | directive, which stores each number as a sixteen-bit integer.
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0001 0000 KEEP KL.94
0002 0000 65816 ON
0003 0000
0004 0000 L9 START
0005 0000
0006 0000
0007 0000 LESS GEQU $82 counter
0008 0000 SAME GEQU $84 counter
0009 0000 MORE GEQU $86 counter
0010 0000
0011 0000 VALUE GEQU $88 value for list to be compared against
0012 0000
0013 0000 18 CLC
0014 0001 FB XCE
0015 0002 C230 REP #$30 turn on both 16-bit modes
0016 0004
0017 0004 LONGA ON
0018 0004 LONGI ON
0019 0004
0020 0004
0021 0004 6482 STZ LESS zero the counters
0022 0006 6484 STZ SAME
0023 0008 6486 STZ MORE
0024  000A
0025 000A
0026 00OA AbL88 LDA VALUE get the comparison value
0027 000C AO01A00 LDY #LAST-TABLE get a counter to # of list items
0028  OOOF
0029 OOOF
0030 O00OF D92700 TOP CMP TABLE)Y compare accum to first list item
0031 0012 FOO6 BEQ ISEQ
0032 0014 9008 BLT ISMORE
0033 0016 E682 INC LESS VALUE isless, bump LESS
0034 0018 8006 BRA LOOP
0035 O001A E684 ISEQ INC SAME valueis same; bump SAME
0036 001C 8002 BRA LOOP
0037 O00lE E686 ISMORE INC MORE VALUE is greater; bump MORE
0038 0020
0039 0020 88 LOOP DEY move pointer to next list item
0040 0021 88 DEY
0041 0022 10EB BPL TOP continue if there are any list items
0042 0024 ; left to compare
0043 0024
0044 0024 38 SEC
0045 0025 FB XCE
0046 0026 60 RTS
0047 0027
0048 0027 0C00009000 DC 1'12,9,302,956,123,1234,98'
0049 0035 04116300 DC I’ 4356,99,11,40000,23145,562'
0050 0041 OF27 LAST DC 1'9999"
0051 0043
0052 0043 END
Listing 9.4.

After setting the mode to sixteen-bit word/index size, the locations that will hold the number of
occurrences of each of the three possible relationships are zeroed. The length of the list is loaded into the Y
register. The accumulator is loaded with the comparison value.

The loop itself is entered, with a comparison to the first item in the list; in this and each succeeding
case, control is transferred to counter-incrementing code depending on the relationship that exists. Note that
equality and less-than are tested first, and greater-than is assumed if control falls through. This is necessary
since there is no branch on greater-than (only branch on greater-than-or-equal). Following the incrementing of
the selected relation-counter, control passes either via an unconditiona branch, or by falling through, to the
loop-control code, which decrements Y twice (since double-byte integers are being compared). Control
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resumes at the top of the loop unless al of the elements have been compared, at which point Y is negative, and
the routine ends.

In addition to comparing the accumulator with memory, there are instructions for comparing the values
in the two index registers with memory, CPX and CPY. These instructions come in especialy handy when it is
not convenient or possible to decrement an index to zero — if instead you must increment or decrement it until a
particular value is reached. The appropriate compare index register instruction is inserted before the branch-on-
condition instruction either loops or breaks out of the loop. Fragment 9.8 shows a loop that continues until the
valuein X reaches $A0.

0000 LOOP ANOP work to be done in the loop goes here
0000 .
0000
0000 .
0000 ES8 INX
0001 EOA000 CPX #SA0
0004 DOFA BNE LOOP continue incrementing X until
0006 ANOP X = $A0, so loop ended
Fragment 9.8

Signed Arithmetic

The examples so far have dealt with unsigned arithmetic — that is, addition and subtraction of binary
numbers of the same sign. What about signed numbers?

As you saw in Chapter 1, signed numbers can be represented using two's-complement notation. The
two’s complement of a number is formed by inverting it (one bits become zeroes, zeroes become ones) and then
adding one. For example, a negative oneis represented by forming the two’s complement of one:

0000 0000 0000 0001 -binary onein sixteen-bit word
1111 1111 1111 1110 -complement word

0000 0000 0000 0001 -add one to complement

1111 1111 1111 1111 -result istwo' s-complement

representation of minus one

Minus one is therefore equivalent to a hexadecimal $FFFF. But as far as the processor is concerned, the
unsigned value $FFFF (65,535 decimal) and the signed value minus-one are equivalent. They both amount to
the same stream of bits stored in a register. It's the interpretation of them given by the programmer which is
significant — an interpretation that must be consistently applied across each of the steps that perform a multi-step
function.

Consider dl of the possible signed and unsigned numbers that can be represented using a sixteen-bit
register. The two's complement of $0002 is $FFFE — as the positive numbers increase, the two’'s-complement
(negative) numbers decrease (in the unsigned sense). Increasing the positive value to $7FFF (%0111 1111 1111
1111), the two's complement is $8001 (%1000 0000 0000 0001); except for $8000, all of the possible values
have been used to represent the respective positive and negative numbers between $0001 and $7FFF.

Since their point of intersection, $8000, determines the maximum range of a signed number, the high-
order bit (bit fifteen will always be one if the number is negative, and zero if the number is positive. Thus the
range of possible binary values (%0000 0000 0000 0000 through %1111 1111 1111 1111, or $0000 . . $FFFF),
using two's-complement form, is divided evenly between representations of positive numbers, and
representations of the corresponding range of negative numbers. Since $8000 is also negative, there seems to
be one more possible negative number than positive; for the purpose here, however, zero is considered positive.

The high-order bit is therefore referred to as the sign bit. On the 6502, with its eight-bit word size (or
the 65816 in an eight-bit register mode), bit seven is the sign bit. With sixteen-bit registers, bit fifteen is the
sign bit. The n or negative flag in the status register reflects whether or not the high-order bit of a given register
is set or clear after execution of operations which affect that register, allowing easy determination of the sign of
a signed number by using either the BPL (branch on plus) or BMI (branch if minus) instructions introduced in
the last chapter.
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Using the high-order bit as the sign bit sacrifices the carry flag's normal (unsigned) function. If the
high-order bit is used to represent the sign, then the addition or subtraction of the sign bits (plus a possible carry
out of the next-to-highest bit) results in a sign bit that may be invalid and that will erroneously affect the carry
flag.

To deal with this Situation, the status register provides another flag bit, the v or overflow flag, which is
set or rest as the result of the ADC and SBC operations. The overflow bit indicates whether a signed result is
too large (or too small) to be represented in the precision available, just as the carry flag does for unsigned
arithmetic.

Since the high-order bit is used to store the sign, the penultimate bit (the next highest bit) is the high-
order bit as far as magnitude representation is concerned. If you knew if there was a carry out of this bit, it
would obviously be helpful in determining overflow or underflow.

However, the overflow flag is not smply the carry out bit six (if m = 1 for eight-bit mode) or bit
fourteen (if m = O for sixteen-bit mode). Signed generation of the v flag is not as straightforward as unsigned
generation of the carry flag. It is not automatically true that if there is a carry out of the penultimate bits that
overflow has occurred, because it could aso mean that the sign has changed. This is because of the circular or
wraparound nature of two’ s-complement representation.

Consider Fragment 9.9. Decimal values with sign prefixes are used for emphasis (and convenience) as
the immediate operands in the source program,; their hexadecimal values appear in the left-hand column which
interlists the generated object code (opcode first, low byte, high byte). You can see that —10 is equivalent to
$FFF6 hexadecimal, while 20 is hexadecimal $0014. Examine this addition operation in binary:

0000 C230 REP #330 16-bit registers
0002 LONGA ON
0002 LONGI ON
0002
0002  A9FGFF LDA #10
0005 18 CLC
0006 691400 ADC #20
Fragment 9.9

Two things should become clear: that the magnitude of the result (10 decimal) is such that it will easily
fit within the number of bits available for its representation, and that there is a carry out of bit fourteen:

1 1111 1111 111 1 carry from previous bit
1111 1111 1111 0110  -10decimal
0000 0000 0001 0100 +20 decimd

1 0000 0000 0000 1010  result is+10 decimal

In this case, the overflow flag is not set, because the carry out of the penultimate bit indicates wraparound
rather than overflow (or underflow). Whenever the two operands are different signs, carry out of the next-to-
highest bit indicates wraparound; the addition of a positive and a negative number (or vice versa) can result in a
number too large (try it), but it may result in wraparound.

Conversely, overflow exists in the addition of two negative numbers if no carry results from the
addition of the next-to-highest (penultimate) bits. If two negative numbers are added without overflow, they
will always wrap around, resulting in a carry out of the next-to-highest bit. When wraparound has occurred, the
sign hit is set due to the carry out of the penultimate bit. In the case of the two negative numbers being added
(which always produces a negative result), this setting of the sign bit results in the correct sign. In the case of
the addition of two positive numbers, wraparound never occurs, so a carry out of the penultimate bit always
means that the overflow flag will be set.

These rules likewise apply for subtraction; however, you must consider that subtraction is really an
addition with the sign of the addend inverted, and apply them in this sense.

In order for the processor to determine the correct overflow flag value, it exclusive-or’s the carry out of
the penultimate bit with the carry out of the high-order bit (the value that winds up in the carry flag), and sets or
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resets the overflow according to the result. By taking the exclusive-or of these two vaues, the overflow flag is
set according to the rules above.

Consider the possible results:

- If both values are positive, the carry will be clear; if there is no penultimate carry, the overflow flag,
too, will be clear, because 0 XOR 0 equals O; the value in the sign bit is zero, which is correct
because a positive number plus a positive number aways equals a positive number. On the other
hand, if there is a penultimate carry, the sign bit will change. While there is till no fina carry,
overflow isset. Thefinal carry (clear) xor penultimate carry (set) equals one. Whenever overflow
is set, the sign bit of the result has the wrong value.

If the signs are different, and there is a penultimate carry (which means wraparound in this case),
there will be afina carry. But when thisis exlusive-or’d with the penultimate carry, it is canceled
out, resulting in overflow being cleared. If, though, there were no penultimate carry, there would be
no final carry; again, 0 XOR 0 = 0, or overflow clear. If the sign bit is cleared by the addition of a
penultimate carry and the single negative sign bit, since wraparound in this case implies the
trandation from a negative to a positive number, the sign (clear) is correct. If there was no
wraparound, the result is negative, and the sign bit is aso correct (set).

Finally, if both signs are negative, there will always be a carry out of the sign bit. A carry out of
the penultimate bit means wraparound (with a correctly negative result), so carry (set) XOR
penultimate carry (set) equals zero and the overflow flag is clear. If, however, there is no carry,
overflow (or rather, underflow) has occurred, and the overflow is set because XOR no carry equals
one.

The net result of this analysis is that, with the exception of overflow detection, signed arithmetic is
performed in the same way as unsigned arithmetic. Multiple-precision signed arithmetic is also done in the
same way as unsigned multiple-precision arithmetic; the sign of the two numbers is only significant when the
high-order word is added.

When overflow is detected, it can be handled in three ways: treated as an error, and reported; ignored; or
responded to by attempting to extend the precision of the result. Although this latter case is not generally practical, you
must remember that, in this case, the value in the sign bit will have been inverted. Having determined the correct sign, the
precision may be expanded using sign extension, if there is an extra byte of storage available and your arithmetic routines
can work with a higher-precision variable. The method for extending the sign of a number involves the bit manipulation
instructions described in the next chapter; an example of it isfound there.

Signed Comparisons

The principle of signed comparisons is similar to that of unsigned comparisons: the relation of one
operand to another is determined by subtracting one from the other. However, the 65x CMP instruction, unlike
SBC, does not affect the v flag, so does not reflect signed overflow/underflow. Therefore, signed comparisons
must be performed using the SBC instruction. This means that the carry flag must be set prior to the
comparison (subtraction), and that the original value in the accumulator will be replaced by the difference.
Although the value of the difference is not relevant to the comparison operation, the sign is. If the sign of the
result (now in the accumulator) is positive (as determined according to rules outlined above for proper
determination of the sign of the result of a signed operation), then the value in memory is less than the original
value in the accumulator; if the sign is negative, it is greater. If, though, the result of the subtraction is zero,
then the values were equal, so this should be checked for first.

The code for signed comparisons is smilar to that for signed subtraction. Since a correct result need
not be completely formed, however, overflow can be tolerated since the goal of the subtraction is not to
generate a result that can be represented in a given precision, but only to determine the relationship of one value
to another. Overflow must still be taken into account in correctly determining the sign. The value of the sign
bit (the high-order bit) will be the correct sign of the result unless overflow has occurred. In that casg, it is the
inverted sign.

Listing 9.5 does a signed comparison of the number stored in VAL 1 with the number stored in VAL 2,
and sets RELATION to minus one, zero, or one, depending on whether VAL1 < VAL2, VAL1 = VAL2 or
VAL1>VAL2, respectively:
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0001 0000 KEEP KL.9.5
0002 0000 65816 ON
0003 0000
0004 0000 COMPARE START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002 C230 REP #$30 turn 16-bit modes on
0009 0004
0010 0004 LONGA ON
0011 0004 LONGI ON
0012 0004
0013 0004 9C2500 STZ RELATION  clear result cell
0014 0007 AD2100 LDA VAL1
0015 O000A 38 SEC
0016 000B ED2300 SBC VAL2
0017 OOCE FOOE BEQ SAME
0018 0010 7007 BVS INVERT if v set, invert meaning of sign
0019 0012 3007 BMI LESS braif VAL1 islessthan VAL2
0020 0014 EE2500 GREATER INC RELATION  VAL1lisgreater than VAL2
0021 0017 8005 BRA SAME
0022 0019 30F9 INVERT BMI GREATER invert: braif minus: minus = greater
0023 001B CE2500 LESS DEC RELATION
0024 O001E 38 SAME CLC
0025 O001F FB XCE
0026 0020 60 RTS
0027 0021
0028 0021 0000 VAL1 DS 2
0029 0023 0000 VAL2 DS 2
0030 0025 0000 RELATION DS 2
0031 0027
0032 0027 END
Listing 9.5
Decimal Mode

All of the examples in this chapter have dealt with binary numbers. In certain applications, however,
such as numeric 1/O programming, where conversion between ASCII and binary representation of decimal
strings is inconvenient, and business applications, in which conversion of binary fractions to decimal fractions
results in approximation errors, it is convenient to represent numbers in decimal form and, if possible, perform
arithmetic operations on them directly in this form.

Like most processors, the 65x series provides a way to handle decimal representations of numbers.
Unlike most processors, it does this providing a special decimal mode that causes the processor to use decimal
arithmetic for ADC, SBC, and CMP operations, with automatic “on the fly” decimal adjustment. Most other
microprocessors, on the other hand, do all arithmetic the same, requiring a second “decimal adjust” operation to
convert back to decimal form the binary result of arithmetic performed on decimal numbers. As you remember
from Chapter 1, binary-coded-decima (BCD) digits are represented in four bits as binary values from zero to
nine. Although values from $A to $F (ten to fifteen) may aso be represented in four bits, these bit patterns are
illega in decima mode. So when $03 is added to $09, the result is $12, not $0C as in binary mode.

Each four-bit field in a BCD number is a binary representation of a single decimal digit, the rightmost being the
one’s place, the second the ten’s, and so on. Thus, the eight-bit accumulator can represent numbers in the range
0 through 99 decimal, and the sixteen-bit accumulator can represent numbers in the range 0 through 9999.
Larger decima numbers can be represented in multiple-precision, using memory variables to store the partia
results and the carry flag to link the component fields of the number together, just as multiple-precision binary
numbers are.
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Decimal mode is set via execution of the SED instruction (or a SEP instruction with bit three set). This
sets the d or decimal flag in the status register, causing all future additions and subtractions to be performed in
decimal mode until the flag is cleared.

The default mode of the 65x processors is the binary mode with the decimal flag clear. It is important
to remember that the decimal flag may accidentally be set by a wild branch, and on the NMOS 6502, it is not
cleared on reset. The 65C02, 65802, and 65816 do clear the decimal flag on reset, so this is of dightly less
concern. Arithmetic operations intended to be executed in binary mode, such as address calculations, can
produce totally unpredictable results if they are accidentally executed in decimal mode.

Finally, although the carry flag is set correctly in the decimal mode alowing unsigned multiple-
precision operations, the overflow flag is not, making signed decimal arithmetic, while possible, difficult. You
must create your own sign representation and logic for handling arithmetic based on the signs of the operands.
Borrowing from the binary two’s-complement representation, you could represent negative numbers as those
(unsigned) values which, when added to a positive number result in zero if overflow isignored. For example,
99 would equal —1, since 1 plus 99 equals 100, or zero within a two-digit precision. 98 would be —2, and so on.
The different nature of decimal representation, however, does not lead itself to signed operation quite as
conveniently as does the binary two’ s-complement form.
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10) Chapter Ten

L ogic and Bit Manipulation Operations

The logical operations found in this chapter are the very essence of computer processing; even the
arithmetic functions, at the lowest level, are implemented as combinations of logic gates. Logic, or more
accurately, boolean logic, is concerned with the determination of “true” and “false”.

Computers can represent ssimple logical propositions and relationships as binary states: the bit-value
used to represent “1” in a given computer is considered equivalent to true; the bit-value which stands for “0” is
considered equivalent to false. This designation is in fact arbitrary, and the values could easily be reversed.
What matters is the consistent application of the convention. Alternative terms are “set” and “reset” (or
“clear”), “on” and “off,” “high” and “low,” “asserted” and “negated.” There is a tendency to equate al of these
terms; this is generally acceptable except when you are concerned with the actual hardware implementation of
these values, in which case the issue of positive logic (“on” means “true’) vs. negative logic (“off” means
“true”) becomes a consideration. But the intuitive assumption of a positive logic system (“1" equals “on”
equals “true’) seems the most natural, and may be considered conventional, so the terms listed above as
equivalent will be used interchangeably, as appropriate for a given context.

Before discussing these functions, it is important to remember the bit-numbering scheme described in
Chapter 1: bits are numbered right to left from least significant to most significant, starting with zero. So a
single byte contains bits zero through seven, and a double byte contains hits zero through fifteen. Bit zero
always stands for the “one's place.” Bit seven stands for the “128ths place” and bit fifteen stands for the
“32768ths place,” except that the high bit of a signed number is, instead, the sign bit. A single bit (or string of
bits smaller than a byte or double byte) is sometimes called a bit-field, implying that the bits are just a part of a
larger data element like a byte or a double byte.

You'll find two types of instructions discussed in this chapter: the basic logic functions, and the
shiftsand rotates. They’'relisted in Table 10.1.

Available on:
Mnemonic 6502 65C02 65802/816 Description
Logic Instruction:
AND X X X logical and
EOR X X X logical exclusive-or
ORA X X X logical or (inclusive or)
Bit Manipulation Instruction:
BIT X X X test bits
TRB X X test and reset bits
TSB X X test and set bits
Shift and Rotate Instructions:
ASL X X X shift bits left
LSR X X X shift bits right
ROL X X X rotate bits left
ROR X X X rotate bits right

Table 10-1 Logic Instructions

L ogic Functions

The fundamental logical operations implemented on the 65x processor are and, inclusive or, and
exclusive or. These are implemented as the AND, ORA, and EOR machine instructions. These three logical
operators have two operands, one in the accumulator and the second in memory. All of the addressing modes
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available for the LDA, STA, ADC, SBC, and CMP instructions are aso available to the logical operations.
The truth tables for these operations are found in Chapter 1 and are repeated again in the descriptions of the
individual instructions in Chapter 18.

In addition to these instructions, there are also hit testing instructions that perform logical operations;
these are the BIT (test memory bits), TSB (test and set bits), and TRB (test and reset bits) instructions. These
three instructions set status flags of memory values based on the result of logical operations, rather than
affecting the accumulator.

The logica and bit manipulation instructions are broadly useful: for testing for a condition using
boolean logic (for example, if thisis true and that is true then do this); for masking bit fields in a word, forcing
them to be on or off; for performing quick, ssimple multiplication and division functions, such as multiplying by
two or taking the modulus of a power of two (finding the remainder of a division by a power of two); for
controlling 1/0O devices; and for a number of other functions.

The most typical usage of the boolean or logical operators is probably where one of the two operandsis
an immediate value. Immediate values will generally be used in these examples. Additionally, operands will
usualy be represented in binary form (prefixed by a percent sign - %), since it makes the bit-pattern more
obvious. All of the logical operations are performed bitwise; that is, the result is determined by applying the
logical operation to each of the respective bits of the operands.

Logical AND

Consider, for example, the eight-bit AND operation illustrated in Figure 10.1.

bit number
7 6 5 4 3 2 10
01 1 10110 $76
and 1 1 0 0 1 0 1 1 and $CB
01 00 0 O 1DO0 $42 result

Figure 10-1 The AND Operation

The result, $42 or %0100 0010, isformed by ANDing bit zero of the first operand with bit zero of the second to
form bit zero of the result; bit one with bit one; and so on. In each bit, a one results only if there is aone in the
corresponding bit-fields of both the first operand and the second operand; otherwise zero results.

An example of the use of the AND instruction would be to mask bits out of a double-byte word to
isolate a character (single-byte) value. A mask is a string of bits, typically a constant, used as an operand to a
logic instruction to single out of the second operand a given bit or bit-field by forcing the other bits to zeroes or
ones. Masking characters out of double bytes is common in 65802 and 65816 applications where a “ default”
mode of sixteen-bit accumulator and sixteen-bit index registers has been selected by the programmer, but
character data needs to be accessed as well. For some types of character manipulation, it is quicker to smply
mask out the extraneous data in the high-order byte than to switch into eight-bit mode. The code in Listing 10.1
is fragmentary in the sense that it is assumed that the core routine is inserted in the middie of other code, with
the sixteen-bit accumulator size already selected.

It may seem to be splitting hairs, but this routine, which compares the value in a string of characters
pointed to by the value in the memory variable CHARDEX to the letter ‘€ is two machine cycles faster than
the aternative approach, which would be to switch the processor into the eight-bit accumulator mode, compare
the character, and then switch back into the sixteen-bit mode.
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0001 0000 KEEP KL.10.1
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000 PTR GEQU $80
0006 0000
0007 0000 18 CLC
0008 0001 FB XCE
0009 0002
0010 0002 C230 REP #$30 assume operation in 16-bit modes
0011 0004 LONGA ON
0012 0004 LONGI ON
0013 0004
0014 0004 AC4C00 LDY CHARDEX  get index pointing to desired char
0015 0007 B91A00 LOOP LDA STRING,Y  get thechar & the one after it
0016 O000A  29FFO0 AND %000000001111 AND out the “next” char
0017 000D (96500 CMP #e cmp low byteto ‘€, high 0 byteto O
0018 0010 D004 BNE NOMATCH
0019 0012
0020 0012 38 SEC return to emulation mode
0021 0013 FB XCE
0022 0014
0023 0014 38 SEC set carry indicates successful match
0024 0015 60 RTS
0025 0016
0026 0016 38 NOMATCH SEC return to emulation mode
0027 0017 FB XCE
0028 0018
0029 0018 18 CLC clear carry indicates unsuccessful match
0030 0019 60 RTS
0031 O001A
0032 O001A 54686573 STRING DC C ‘These characters
0033 002A 61726520 DC C ‘are al packed next to’
0034 0040 65616368 DC C ‘each other’
0035 004A 0000 DC H ‘0000
0036 004C 0000 CHARDEX DC 2 index to a particular char in STRING
0037 004E END
Listing 10.1

Each time the program is executed with a different value for CHARDEX, a different adjacent character
will also be loaded into the high byte of the accumulator. Suppose the value in CHARDEX were four; when
the LDA STRING,Y instruction is executed, the value in the low byte of the accumulator is $65, the ASCII
value for alower-case ‘€. The vaue in the high byte is $20, the ASCII value for the space character (the space
between “These” and “characters’). Even though the low bytes match, a comparison to ‘€ would fail, because
the high byte of the CM P instruction’s immediate operand is zero, not $20 (the assembler having automatically
generated a zero as the high byte for the single-character operand ‘€').

However, by ANDing the value in the accumulator wit %0000000011111111 ($00FF), no matter what
the original value in the accumulator, the high byte of the accumulator is zeroed (since none of the
corresponding bits in the immediate operand are set). Therefore the comparison in this case will succeed, as it
will for CHARDEX vaues of 2, 13, 18, 28, 32, 38, and 46, even though their adjacent characters, automatically
loaded into the high byte of the accumulator, are different.

The AND instruction is also useful in performing certain multiplication and division functions. For
example, it may be used to calculate the modulus of a power of two. (The modulus operation returns the
remainder of an integer division; for example, 13 mod 5 equals 3, which is the remainder of 13 divided by 5.)
Thisis done smply by ANDing with ones all of the bitsto the right of the power of two you wish the modulus
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of and masking out the rest. A program fragment illustrating this will be provided later in this chapter, where an
example of the use of the L SR instruction to perform division by powers of two will also be given.

In general, the AND operation is found in two types of applications: selectively turning bits off (byte
ANDing with zero), and determining if two logical values are both true.

Logical OR

The ORA instruction is used to selectively turn bits on by Oring them with ones, and to determine if
either (or both) of two logical valuesistrue. A character-manipulation example (Listing 10.2) is used — this
time writing a string of characters, the high bit of each of which must be set, to the Applell screen memory —to
demonstrate atypical use of the ORA instruction.

Since the video screen is memory-mapped, outputting a string is basically a string move. Since normal
Apple video characters must be stored in memory with their high-order bit turned on, however, the ORA
#% 10000000 instruction is required to do this if the character string, as in the example, was originaly stored in
normal ASCII, with the high-order bit turned off. Note that it clearly does no harm to OR a character with $80
(%10000000) even if its high bit is already set, so the output routine does not check characters to see if they
need to have set high bit, but rather routinely Ors them all with $80 before writing them to the screen. When
each character is first loaded into the eight-bit accumulator from STRING, its high bit is off (zero); the ORA
instruction converts each of the values - $48, $65, $6C, $6C, $6F — into the corresponding high-bit-set ASCI|
values - $C8, $E5, $EC, $EC, and $EF, before storing them to screen memory, where they will be displayed as
normal, non-inverse characters on the video screen. In this case, the same effect (the setting of the high-order
bit) could have been achieved if $80 had been added to each of the characters instead; however, the OR
operation differs from addition in that even if the high bit of the character already had a value of one, the result
would still be one, rather than zero plus a carry as would be the case if addition were used. (Further aCLC
operation would also have been required prior to the addition, making ORA a more efficient choice as well.)
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0001 0000 KEEP KL.10.2
0002 0000 65816 ON
0003 0000
0004 0000 L102 START
0005 0000 MSB OFF
0006 0000 SCREEN GEQU $400 start of Applell screen memory
0007 0000
0008 0000 18 CLC
0009 0001 FB XCE
0010 0002
0011 0002 C210 REP #$10 16-bit index register
0012 0004 LONGI ON
0013 0004
0014 0004 E220 SEP #$20 8-bit accum
0015 0006 LONGA OFF
0016 0006
0017 0006 AO00000 LDY #0 starting index into string & screen =0
0018 0009
0019 0009 B91900 TOP LDA STRING,Y get char from string
0020 000C FOo8 BEQ DONE branch if at O terminator
0021 O0O0CE (0980 ORA #%10000000  set the high bit
0022 0010 990004 STA SCREEN,Y store the char into screen memory
0023 0013
0024 0013 C8 INY
0025 0014 80OF3 BRA TOP
0026 0016
0027 0016 38 DONE SEC
0028 0017 FB XCE
0029 0018 60 RTS
0030 0019
0031 0019 48656C6C STRING DC C‘Hdlo
0032 O001E 00 DC H ‘00
0033 001F
0034 001F END
Listing 10.2

Logical Exclusive-Or

The third logical operation, Exclusive-OR, is used to invert bits. Just as inclusive-OR (ORA) will
yield a true result if either or both of the operands are true, exclusive-or yields true only if one operand is true
and the other is false; if both are true or both are false, the result isfalse. This means that by setting a bit in the
memory operand of an EOR instruction, you can invert the corresponding bit of the accumulator operand
(where the result is stored). In the preceding example, where the character constants were stored with their high
hits off, an EOR #$80 instruction would have had the same effect as ORA #$80; but like addition, if some of
the characters to be converted aready had their high-order bits set, the EOR operation would clear them.

Two good examples of the application of the EOR operation apply to signed arithmetic. Consider the
multiplication of two signed numbers. As you know, the sign of the product is determined by the signs of the
multiplier and multiplicand according to the following rule: if both operands have the same sign, either positive
or negative, the result is always positive; if the two operands have different signs, the result is aways negative.
You perform signed multiplication by determining the sign of the result, and then multiplying the absolute
values of both operands using the same technique as for unsigned arithmetic. Finally, you consider the sign of
the result: if it is positive, your unsigned result is the final result; if it is negative, you form the final result by
taking the two’s-complement of the unsigned result. Because the actual multiplication code is not included, this
example is given as two fragments, 10.1 and 10.2.

Fragment 10.1 begins by clearing the memory location SIGN, which will be used to store the sign of
the result. Then the two values to be multiplied are exclusive-OR’d, and the sign of the result is tested with the
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BPL instruction. If the sign bit of the result is negative, you know that the sign bits of the two operands were
different, and therefore the result will be negative; a negative result is preserved by decrementing the variable
SIGN, making its value $FFFF.

Next, the two operands are converted to their absolute values by two’s complementing them if they are
negative. The technique for forming the two's complement of a number is to invert it, and then add one. The
EOR operation is used again to perform the inversion; the instruction EOR #3FFFF will invert al of the bitsin
the accumulator: ones become zeroes, and zeros become ones. An INC A instruction adds one. In the case of
NUM 2, this result must be saved to memory before the accumulator is reloaded with NUM 1, which is aso

two’s complemented if negative.

0000 0000 NUM1 DS 2

0002 0000 NUM2 DS 2

0004

0004 C230 REP #$30 16-bit modes

0006 LONGA ON

0006 LONGI ON

0006

0006  9CO0080 STZ SIGN clear thesign

0009 ADOO00O LDA NUM1

000C  4D0200 EOR NUM2 exclusive-or: check sign
000F 1003 BPL OK

0011  CE0080 DEC SIGN negative: sign = $FFFF
0014 ADO200 OK LDA NUM2

0017 1007 BPL OK1

0019  49FFFF EOR H#FFFF minus: get absolute value
001C 1A INC A

001D 8D0200 STA NUM2

0020 ADOOOO0 OK1 LDA NUM1

0023 1004 BPL OK2

0025  49FFFF EOR H#BFFFF

0028 1A INC A

0029 OK2 ANOP

Fragment 10.1

At this point, the unsigned multiplication of the accumulator and NUM 2 can be performed. The code
for the multiplication itself is omitted from these fragments; however, an example of unsigned multiplication is
found in Chapter 14. The important fact for the moment is that the multiplication code is assumed to return the
unsigned product in the accumulator.

0000  AEO0080 LDX SIGN

0003 1004 BPL  DONE

0005  49FFFF EOR  #$FFFF if should be neg,

0008 1A INC A two’s complement the result
0009 60 DONE RTS

000A

Fragment 10.2
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What remains is to adjust the sign of the result; this code is found in Fragment 10.2. By testing the sign
of SIGN, it can be determined whether or not the result is negative; if it is negative, the actual result isthe two’'s
complement of the unsigned product, which is formed as described above.

Bit Manipulation

You have now been introduced to the three principal logica operators, AND, ORA, and EOR. In
addition there are three more specialized bit-manipulating instructions that use the same logical operations.

The first of these isthe BIT instruction. The BIT instruction really performs two distinct operations.
First, it directly transfers the highest and next to highest bits of the memory operand (that is, seven and six if m
=1, or fifteen and fourteen if m = Q) to the n and v flags. It does this without modifying the value in the
accumulator, making it useful for testing the sign of a value in memory without loading it into one of the
registers. An exception to this is the case where the immediate addressing mode is used with the BIT
instruction: since it serves no purpose to test the bits of a constant value, the n and v flags are left unchanged in
this one case.

BIT’s second operation is to logically AND the value of the memory operand with the value in the
accumulator, conditioning the z flag in the status register to reflect whether or not the result of the ANDing was
zero or not, but without storing the result in the accumulator (as is the case with the AND instruction) or saving
the result in any other way. This provides the ability to test if a given bit (or one or more bits in a bit-field) is
set by first loading the accumulator with a mask of the desired bit patterns, and then performing the BIT
operation. The result will be non-zero only if at least one of the bits set in the accumulator is likewise set in the
memory operand. Actually, you can write your programs to use either operand as the mask to test the other,
except when immediate addressing is used, in which case the immediate operand is the mask, and the value in
the accumulator is tested.

A problem that remained from the previous chapter was sign extension, which is necessary when
mixed-precision arithmetic is performed — that is, when the operands are of different sizes. It might also be
used when converting to a higher precision due to overflow. The most typical example of thisis the addition (or
subtraction) of a signed eight-bit and a signed sixteen-bit value. In order for the lesser-precision number to be
converted to a signed number of the same precision as the larger number, it must be sign-extended first, by
setting or clearing all of the high-order bits of the expanded-precision number to the same value as the sign bit
of the original, lesser-precision number.

In other words, $7F would become $007F when sign-extended to sixteen bits, while $8F would become
$FF8F. A sign-extended number evaluates to the same number as its lesser precision form. For example, $FF
and $FFFF both evaluate to —1.

You can use the BIT instruction to determine if the high-order bit of the low-order byte of the
accumulator is set, even while in the sixteen-bit accumulator mode. This is used to sign extend an eight-bit
value in the accumulator to a sixteen-bit onein Listing 10.3.
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0001 0000 KEEP KL.10.3
0002 0000 65816 ON
0003 0000
0004 0000 L103 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002
0008 0002 C230 REP #$30 turn 16-bit modes on
0009 0004 LONGA ON
0010 0004 LONGI ON
0011 0004
0012 0004 A500 LDA 0 get value to sign extend
0013 0006
0014 0006  29FF00 AND H#IFF zero out any garbage in high byte
0015 0009 898000 BIT #$80 test high bit of low byte
0016 000C F003 BEQ OK number is positive; leave asis
0017 O0OE  0900FF ORA #$FFOO  turn on high bits
0018 0011
0019 0011 8500 OK STA 0 save sign-extended value
0020 0013
0021 0013 38 SEC
0022 0014 FB XCE
0023 0015 60 RTS
0024 0016 END
Listing 10.3

The pair of “test-and-set” instructions, TSB and TRB, are similar to the BIT instruction in that they set
the zero flag to represent the result of ANDing the two operands. They are dissimilar in that they do not affect
the n and v flags. Importantly, they also set (in the case of TSB) or reset (in the case of TRB) the bits of the
memory operand according to the bits that are set in the accumulator (the accumulator value is a mask). You
should recognize that the mechanics of this involve the logical functions described above: the TSB instruction
Ors the accumulator with the memory operand, and stores the result to memory; the TRB inverts the value in
the accumulator, and then ANDs it with the memory operand. Unlike the BIT instruction, both of the test-and-
set operations are read-modify-write instructions; that is, in addition to performing an operation on the memory
value specified in the operand field of the instruction, they also store aresult to the same location.

The test-and-set instructions are highly specialized instructions intended primarily for control of
memory-mapped /O devices. This is evidenced by the availability of only two addressing modes, direct and
absolute, for these instructions; this is sufficient when dealing with memory-mapped 1/0O, since I/O devices are
always found at fixed memory locations.

Shifts and Rotates

The second class of bit-manipulating instructions to be presented in this chapter are the shift and rotate
instructions: ASL, LSR, ROL, and ROR. These instructions copy each bit value of a given word into the adjacent bit to the
“left” or “right.” A shift t o the left means that the bits are shifted into the next-higher-order bit; a shift to the right means
that each is shifted into the next-lower-order bit. The bit shifted out of the end-that is, the orginal high-order bit for aleft
shift, or the original low order bit for aright shift-is copied into the carry flag.

Shift and rotate instructions differ in the value chosen for the origin bit of the shift or rotate. The shift
instructions write a zero into the origin bit of the shift — the low-order bit for a shift left of the high-order bit for
shift right. The rotates, on the other hand, copy the original value of the carry flag into the origin bit of the
shift. Figure 10.2. and Figure 10.3 illustrate the operation of the shift and rotate instructions.

The carry flag, as Fragment 10.3 illustrates, is used by the combination of a shift followed by one or
more rotate instructions to alow multiple-precision shifts, much asit isused by ADC and SBC instructions to
enable multiple-precision arithmetic operations.
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In this code fragment, the high-order bit in LOC1 is shifted into the carry flag in the first ASL
instruction and a zero is shifted into the low-order bit of L OC1; its binary value changes from
1010101010101010
to
0101010101010100 carry =1
The next instruction, ROL, shifts the value in the carry flag (the old high bit of L OC1) into the low bit of
LOC2. The high bit of LOC2 is shifted into the carry.
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ASL -Before
(1 /o1 [1]0 0 [1 1]
CARRY FLAG
ASL
vivivIvIvIv]v]

ROL -Before
(1 [o [1]1 00 f1 [1 |
CARRY FLAG

RO

VivlvIviv]v ]V ]
ru\o\l\l 0|0 [1 1]

Fragment 10.3

)

CARRY FLAG CARRY FLAG
ASL-After ROL -After
(0 [1 1 ]ofo]1]1 0] (0 [1J1]ofo 1 [1]X]
CARRY FLAG CARRY FLAG
Figure 10-2 Shift and Rotate L eft
0000 A9AAAA LDA #%61010101010101010
0003  8D0080 STA LOC1
0006 A9AAAA LDA #%61010101010101010
0009  8D0080 STA LOC2
000C  OE0080 ASL LOC1
000F  2E0080 ROL LOC2
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L SR-Before
(1 o1 ]2 [ofo 1 [1]
CARRY FLAG
LSR

WWWGT#!}W

o—»|/1 ][0 ]J1[1]0]0[1]1
CARRY FLAG
L SR-After
[0 /1 ]0 [1[1]0]0 [1]
CARRY FLAG

ROR-Before
(1 [o[1]1]ofo[1]1]
CARRY FLAG
ROR
—»1 (01 ]1]0]0]1]1
CARRY FLAG
ROR-After
[x [1]0 [1 J1]0 [o[1 ]
CARRY FLAG

Figure 10-3 Shift and Rotate Right
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1010101010101010
becomes
0101010101010101 cary=1

A double-precision shift left has been performed.

What is the application of the shift and rotate instructions? There are two distinct categories:
multiplication and division by powers of two, and generalized bit-manipulation.

Left shifts multiply the original value by two. Right shifts divided the origina value by two.
This principal isinherent in the concept of positional notation; when you multiply avalue by ten by
adding a zero to the end of it, you are in effect shifting it left one position; likewise when you divide
by ten by taking away the right-most digit, which in this case is base two.

Shifting is also useful, for the same reason, in a generalized multiply routine, where a combination of
shift and add operations are performed iteratively to accomplish the multiplication. Sometimes, however, it is
useful to have a dedicated multiplication routine, as when a quick multiplication by a constant value is needed.
If the constant value is a power of two — such as four, the constant multiplier in Fragment 10.4 — the solution is
simple: shift left a number of times equal to the constant’s power of two (four is two to the power, so two left
shifts are equivalent to multiplying by four).

0000 A93423 LDA #$2334
0003 OA ASL A times 4 (2 to the 2™ power)
0004 O0A ASL A

Fragment 10.4

The result in the accumulator is $2334 times four, or $8CDO0. Other “quickie” multiply routines can be easily
devised for multiplication by constants that are not a power of two. Fragment 10.5 illustrates multiplication by
ten: the problem is reduced to a multiplication by eight plus a multiplication by two.

0000 A9D204 LDA #1234

0003 OA ASL A multiply by 2

0004 8D0080 STA TEMP save intermediate result
0007 OA ASL A times 2 again = times 4
0008 OA ASL A times2 again = times 8
0009 18 CLC

000A  6D0080 ADC TEMP =times 10

Fragment 10.5

After the first shift left, which multiplies the original value by two, the intermediate result (1234 * 2 =
2468) is stored at location TEMP. Two more shifts are applied to the value in the accumulator, which equals
9872 at the end of the third shift. This is added to the intermediate result of 1234 times 2, which was earlier
stored at location TEMP, to give the result 12,340, or 1234 * 10.

Division using the shift right instructions is similar. Since bits are lost during a shift right operation,
just as there is often a remainder when an integer division is performed, it would be useful if there were an easy
way to calculate the remainder (or modulus) of a division by a power of two. Thisiswhere the use of the AND
instruction alluded to earlier comesinto play.
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0000
0003
0004
0005
0006
0009
000A
000D

A91FE2
48

4A

4A
8D0080
68
290300
8D0080

LDA
PHA
LSR
LSR
STA
PLA
AND
STA

H#BE21F

A
A
QuUO

#3$3
MOD

save accumul ator

divide by 2

divide by 2 again = divide
save quotient

recover origina value

save modulus

Fragment 10.6

Consider Fragment 10.6. In this case, $E21F is to be divided by four. Aswith multiplication, so with
division: two shifts are applied, one for each power of two, thistime to the right. By the end of the second shift,
the value in the accumulator is $3887, which is the correct answer. However, two bits have been shifted off to
the right. The origina value in the accumulator is recovered from the stack and then ANDed with the divisor
minus one, or three. This masks out all but the bits that are shifted out during division by four, the bits which
correspond to the remainder or modulus the quotient times four, and then adding the remainder.

The second use for the shift instructions is general bit manipulation. Since the bit shifted out of the
word aways ends up in the carry flag, thisis an easy way to quickly test the value of the high- or low-order bit
of aword. Listing 10.4 gives a particularly useful example: a short routine to display the value of each of the
flagsin the status register. This routine will, one by one, print the letter-name of each of the status register flags
if theflag is set (as tested by the BCS instruction), or else print adash if it is clear.
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

SKIP

0048
0049
0050
0051
0052

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0001
0001
0002
0003
0003
0005
0007
0007
0007
0007
0008
000A
000D
OOOF
0012
0012
0014
0016
0018
001A
001C
001F
0021
0023
0025
0026
0028
002A
002D
002D
002E
002F
0030
0030
0038
0038

0000
0000
0000
0000
0000

08

18
FB

C2FF
E220

68
8580
A23000
8682
A20800

0680
B0O4
A92D
8002
B282
200080
E682
D002
E683
CA
DOEA
A90D
200080

38
FB
60

6E766D78

00001C

48

KEEP
65816

PRINTP
PREG
PTR

LOOP

DOFLAG
SKIP

OK

FLAGS

CouT
ECOUT

KL.10.4
ON

START
GEQU
GEQU

CLC
XCE

REP
SEP
LONGI
LONGA

PLA
STA
LDX
STX
LDX

ASL
BCS
LDA
BRA
LDA
JSR

INC

BNE
INC

DEX
BNE
LDA

SEC
XCE
RTS

DC

END

START
GEQU
PHA

$80
$82

HIFF
#$20
ON
OFF

PREG
#FLAGS
PTR

#8

PREG
DOFLAG
oy
SKIP
(PTR)
CcouT
PTR

OK
PTR+1

LOOP
#$0D
CouT

¢ nvmxdizc’

$FDED

save (on the stack)
the status reg to be displayed

16-bit index regs; reset all flags
8-bit accum

pull status reg to display into accum
then store to memory location PREG
load 16-bit X with ptr to flag string
and storeto PTR
load X with counter (# of flag bits)

shift high bit of PREG — carry
branch if set
if flag not set, output ‘-

get flag letter from FLAGS
output flag letter or *-*
16-hit
increment
(incr hi byteif low rolls over)
decrement counter
continue thru all 8 bits of status reg
output cr after all 8 flags

COUT IN APPLE I | MONITOR
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0053 0001 DA PHX
0054 0002 5A PHY
0055 0003 08 PHP
0056 0004 38 SEC
0057 0005 FB XCE
0058 0006 20EDFD JSR ECOUT
0059 0009 18 CLC
0060 OOOA FB XCE
0061 000B 28 PLP
0062 000C 7A PLY
0063 000D FA PLX
0064 OOOE 68 PLA
0065 OOOF 60 RTS
0066 0010 END
Listing 10.4
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11) Chapter Eleven

The Complex Addressing Modes

Chapter 7 defined the term addressing mode and introduced the set of smple 65x addressing modes,
those which involve at most a minimum of calculating combined values from multiple locations.

This chapter continues and expands the discussion of one of those modes, the direct page addressing
mode, for those cases where the direct page register value is other than zero. It discusses the basis for selection
by the assembler among the direct page, absolute, and long addressing modes, and how you can explicitly
override those assumptions. And it discusses the set of complex addressing modes available on the 6502, the
65C02, the 65802, and the 65816, those which require the effective address to be calculated from several
sources (Table 11.1). The understanding of these modes aso provides the context within which to discuss
several more complex push instructions that were previously deferred to this chapter (Table 11.2).

Available on all 65x processors: Example  Syntax
absolute indexed with X LDA $2234,X
absolute indexed with Y LDA $2234.Y
direct page (zero page) indexed with X LDA $17,X
direct page (zero page) indexed with Y LDX $17,Y
direct page (zero page) indirect indexed with Y LDA ($17),Y
direct page (zero page) indexed indirect with X LDA ($17,X)
Available on the 65C02, 65802, and 65816 only:

absolute indexed indirect JMP ($7821,X)
Available on the 6502 and 65816 only:

non-zero direct page LDA $17
absolute long indexed with X LDA $654321,X
direct page indirect long indexed with Y LDA [$17],Y
stack relative LDA $29,S
stack relative indirect indexed with Y LDA ($29,9.Y

Table 11-1 Complex Addressing Modes

Available on:
Mnemonic 6502 65C02 65802/816 Description
PEA X push effective absolute address
PEI X push effective indirect address
PER X push effective relative address

Table 11-2 Complex Push Instructions
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Relocating the Direct Page

Chapter 7 discussed zero page addressing as found on the 6502 and 65C02 and introduced direct page
addressing, the 65816’ s enhancement to zero page addressing. The 65816 lets the zero page addressing modes
use adirect page that can be located and rel ocated anywhere in the first 64K of memory. But Chapter 7 left the
direct page set to page zero so it could be discussed as a simple addressing mode — that is, so no calculation of
direct page register base plus direct page offset needed to be done and so the operand, a direct page offset, could
be thought of as an absolute address with a high-order byte of zero.

Relocating the direct page from page zero, to which it isinitialized on power-up, can be accomplished
in either of two ways. The first would let a new value be pulled off the stack into the direct page register with
the PLD instruction, as found in Fragment 11.1.

0000 ; set direct page register to $3400
0000 AZ20034 LDX #$3400 get $3400 into aregister

0003 DA PHX and push it onto the stack,

0004 2B PLD then pull it into direct page reg

Fragment 11.1

Fragment 11.2 illustrates the second method. The direct page register can be set to the value in the
sixteen-bit C accumulator by use of the TCD instruction, which transfers sixteen bits from accumulator to direct

page register.

0000 ; set direct page register to $FE00
0000  A900FE LDA #$FEOO get $FEQO into sixteen-bit accum
0003 5B TCD and transfer from C accum into direct pg

Fragment 11.2

Both methods of setting the direct page register give it a sixteen-bit value. Since sixteen bits are only
capable of specifying an address within a 64K range, its bank component must be provided in another manner;
this has been done by limiting the direct page to bank zero. The direct page can be located anywhere in 64K but
the bank address of the direct page is aways bank zero.

Chapter 7, which limited the use of the direct page to page zero, used the example shown in Fragment
11.3 to store the one-byte vaue $FO0 at address $0012, which is the direct page offset of $12 added to a direct
page register value of zero. If instead the direct page register is set to $FEQO, then $FO0 is stored to $FE12; the
direct page offset of $12 is added to the direct page register value of $FEQO.

0000 A9F0000 LDA #$FO
0003 8512 STA $12 store accumulator to dp:$12

Fragment 11.3

While it is common to speak of a direct page address of $12, $12 is really an offset from the base
value in the direct page register ($FEQO in the last example). The two values are added to form the effective
direct page address of $FE12.

But while Chapter 7 defined a page of memory as $100 locations starting from a page boundary (any
multiple of $100), the direct page does not have to start on a page boundary; the direct page register can hold
any sixteen-bit value. If the code in Fragment 11.4 is executed, running the code in Fragment 11.3 stores the
one-byte value $f0 at address $1025: $1013 plus $12.
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0000 ; set direct page register to $1013
0000 A91310 LDA #$1013 get $1013 into sixteen-bit accum
0003 5B TCD transfer $1013 from C into direct pg reg

Fragment 11.4

You will for the most part, however, want to set the direct page to begin on a boundary: it saves one
cycle for every direct page addressing operation. This is because the processor design includes logic that, when
the direct page register's low byte is zero, concatenates the direct page register’s high byte to the direct page
offset — instead of adding the offset to the entire direct page register — to form the effective direct page address;
concatenation saves a cycle over addition.

One of the benefits of the direct page concept is that programs, and even parts of programs, can have
their own $100-byte direct pages of variable space separate from the operating system’s direct page of variable
space. A routine might set up its own direct page with the code in Fragment 11.5.

0000 ; set up direct page for this routine at $0300

0000 OB PHD first save current direct page location
0001 A90003 LDA #$300 load sixteen-bit accumulator with $300
0004 5B TCD transfer $300 into direct page reg

Fragment 11.5

To end the routine and restore the direct page register to its previous value, smply execute a PLD
instruction.

As discussed in Chapter 7, having a direct page makes accessing zero page addresses in any bank
require special assembler syntax. Since the zero page is no longer special, absolute addressing must be used;
but since the assembler normally selects direct page addressing for operands less than $100, the standard syntax
requires that you prefix a vertical bar or exclamation point to the operand to force the assembler to use absolute
addressing. Thisisjust one of the potential assembler misassumptions covered in the next section.

Assembler Addressing M ode Assumptions

When the assembler encounters an address in the operand field of an instruction, it must decide whether
the address is a direct page offset, a sixteen-bit absolute address, or a 24-bit long address and generate opcode
and operand values which are appropriate. Its decision is based on the operand’ s size — not the number of digits
in the operand, but whether the value of the operand is greater than $FF of greater than $FFFF. For example,
the assembler will interpret the operand $3F to be a direct page offset regardless of whether it is written as $3F,
$O03F, or $O0003F, because its value is less than 100 hex.

As aresult, there are several areas of memory in 65802 and 65816 systems that the assembler will not
access without entering the special syntax shown in Table 11.3 to override the assembler’ s assumptions.
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Syntax

Description

8-hit operand (less than $100):

Normal direct page addressing:

LDA $32 load accum from:

bank zero: direct page: $32

Force absolute addressing: zero page in data bank:

LDA 1$32 load accum from:

data bank: $0032

Force long addressing: zero page in bank zero:

LDA >$32 load accum from:

16-bit operand (from $100 through $FFFF):

Normal absolute addressing:

LDA $7512 load accum from:

Force direct page addressing:

LDA <47512 load accum from:

Force long addressing:

LDA >$7512 load accum from:  $00:7512
24-hit operand (over $FFFF):
Normal long addressing:
LDA $123456 load accum from: $12:3456
Force absolute addressing:
LDA 1$123456 load accum from:  data bank: $3456
Force direct page addressing:
LDA <$123456 load accum from: bank zero: direct page: $56

$00:0032

data bank: $7512

bank zero: direct page: $12

Table 11-3 Assembler Syntax for Complete Memory Access

The first is zero page memory. Page zero has no special meaning in the 65802 and 65816: its special
attributes have been usurped by the direct page, so accessing it requires use of absolute addressing just like any
other absolute location. But the assembler assumes addresses less than $100 are direct page offsets, not zero
page addresses; it will not generate code to access the zero page (unless the direct pageis set to the zero page so
that the two are one and the same) without explicit direction. And even if the direct page is set to the zero page,
65816 systems have a zero page not only in bank zero but also in every other bank, and those other page zeroes
cannot ever be accessed by absolute addressing without special direction.

The syntax to force the assembler to use absolute addressing is to precede an operand with a vertical bar

or exclamation point as shown in Fragment 11.6.
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0000 C220 REP #%$20 set accumulator/memory to sixteen
0002 LONGA ON

0002  A90032 LDA #$3200 get new direct page location

0005 5B TCD and set up direct page at $3200

0006 E210 SEP #$10 set index registers to eight-bit

0008 LONGI OFF

0008 AZ202 LDX #2 set new data location to bank 2

000A DA PHX push 2 on stack

000B AB PLB and pull it off into data bank

000C A532 LDA $32 load accumulator from dp:$32 in bank 0
000E 8D3200 STA 1$32 store accum at $02:0032 (data bank)
0011  8F320000 STA >$32 store accum at $00:0032 (long address)

Fragment 11.6

Notice the use of another symbol, the greater-than sign (>), to force long addressing. This solves
another problem: The assembler assumes absolute addresses are in the data bank; if the value in the data bank is
other than zero, then it similarly will not generate code to access bank zero without specia direction. The
greater-than sign forces the assembler to use a long addressing mode, concatenating zero high bits onto the
operand until it's 24 bits in length. This usage is shown in Fragment 11.7, where the greater-than sign forces
absolute long addressing, resulting in the assembler generating an opcode using absolute long addressing to
store the accumulator, followed by the three absolute long address bytes for $00:0127, which are, in 65x order,
$27, then $01, then $00.

The ASL ingtruction in Fragment 11.7 makes use of the third assembler override syntax: prefixing an
operand with the less-than sign (<) forces direct page addressing. It's not likely you'll use this last syntax often,
but it may come in handy when you' ve assigned a label to a value that you need the assembler to truncate to its
low-order eight bits so it will be used as a direct page offset.

Note that this override syntax is the recommended standard syntax. As Chapter 1 (Basic Concepts)
points out, even mnemonics can vary from one assembler to another, so assembler syntax such as this can differ
aswell.

0000 E210 SEP #$10 use 8 bit index registers
0002 LONGI OFF

0002

0002 A202 LDX #2 get new data bank value
0004 DA PHX push it on stack
0005 AB PLB pull into data bank
0006 AD2701 LDA $127 from B:$0127 ($02:0127)
0009 8F270100 STA >$127 store at $00:0127

000D 0627 ASL <$127 shift word at dp:$27

Fragment 11.7
Direct Page Indirect Indexed With Y Addressing

Direct page indirect indexed addressing or postindexing, which uses the Y register, is one of two
ways indirect addressing can be combined with indexing (the other will be described in the next section). In
postindexing, the processor goes to the location the direct page operand specifies and adds the index to the
indirect address found there.

Like direct page addressing, which was discussed in Chapter 7 (The Simple Addressing Modes),
postindexing gives you the freedom to access a memory location which is not determined until the program is
executing. Asyou aso learned from Chapter 7, direct page indirect lets your program store the absolute address
of a data bank location you want to access (this address is called the indirect address) into any two consecutive
bytes in the direct page. This makes those two bytes perform as though they are an extra sixteen-bit register in
the microprocessor itself. Further, it leaves the processor’'s registers unobstructed, and it allows data at the
location stored in the direct page “register” to be accessed at any time.
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Postindexing differs in that the absolute address you store into the direct page “register” is not one
location but the base of an array; you can then access a particular byte in the array by loading its array index
into the Y register and specifying, as your operand, the direct page “register” (the location of the indirect base of
the array). As Figure 11.1 shows, the processor goes to the direct page offset, gets the absolute memory
location stored there, than adds the contents of the Y register to get the absolute memory location it will access.
The direct page offset, being in the direct page, is in bank zero on the 65816; the array, on the other hand, isin
the data bank.

Effective Address:

23 15 7 0
| Bank | High | Low
65816 Registers |
Bank High Low
23 15 7 0
| Data Bank (DBR) |
|
Instruction:
| Opcode Operand
| | High Indirect Address

I Low Indirect Address
| Bank 0

Y Index | Register (Y) |

Direct | Page Register (D) |

Figure 11-1 Postindexing

This addressing mode is called postindexing because the Y index register is added after the indirect
address is retrieved from the direct page.

For example, suppose that your program needs to write a dash (hyphen) character to a location on the
Applell’s 40-column screen that will be determined while the program is running. Further suppose your
program picks a screen location at column nine on line seven. The Applell has a firmware routine (called
BASCALC) which, when presented with the number of a line on the screen, calculates the address of the
leftmost position in the line and returns it in zero page location BASL, located at memory locations $0028 and
$00029.

If you wanted to write your hyphen to the first position on the line, you could, after calling BASCALC
and loading the character to print into the accumulator, use the 65C02’ s indirect addressing mode:

9228 STA (BASL)
The 6502 has no simple indirect addressing mode, but Fragment 11.8 illustrates what 6502

programmers long ago learned: you can use postindexing to the same effect as smple indirect by loading the Y
register with zero.

159



The Western Design Center

0000 BASL EQU $28

0000 A92D LDA #- write a dash
0002 A000 LDY #0

0004 9128 STA  (BASL)Y to (BASL)
0006 .

0006

0006

Fragment 11.8

But you want to write the hyphen character to column nine (the leftmost position being column zero),
not column zero. After calling BASCALC, you load the Y register with nine and write your character indirect
through BASL indexed by the ninein Y as seen in Fragment 11.9. If BASCALC calculates line seven on the
screen to start at location $780, and as a result stores that address at BASL, then the routine in Fragment 11.9
will write a dash to location $789 (column nine on line seven).

0000 A92D LDA #- write a dash
0002 AO009 LDY #9 tocol 9
0004 9128 STA (BASL),Y on the line with its base i

Fragment 11.9

You could write a line of dashes from column nine through column sixteen ssimply by creating the loop
coded in Listing 11.1. Thiskind of routine has been used for years on the 6502-based Applell .

0001 0000 KEEP KL.11.1
0002 0000 65816 OFF
0003 0000 ; 6502 example
0004 0000
0005 0000 L111 START
0006 0000
0007 0000 BASL GEQU  $28
0008 0000 LINE? GEQU  $780
0009 0000
0010 0000 A980 LDA #LINE7
0011 0002 8528 STA BASL
0012 0004  A907 LDA #>LINE7
0013 0006 8529 STA BASL+1
0014 0008 A92D LDA #- write a dash
0015 O000A  A009 LDY #9 tocol 9
0016 000C 9128 LOOP STA (BASL),Y onthelinewithitsbasein BASL
0017 OOCE C8 INY incr pointer to next column position
0018 O00OF CO11 CPY #17
0019 0011 90F9 BCC LOOP (BLT): write another dash up to col. 17
0020 0013 60 RTS
0021 0014
0022 0014 END
Listing 11.1

Finally, note that, like absolute indexed addressing, the array of memory accessible to the indirect
indexed addressing mode can extend beyond the current 64K data bank into the next 64K bank, if the index plus
the array base exceeds $FFFF.
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Direct Page Indexing Indirect Addressing

As the introduction to the last section pointed out, you can combine indexing with indirection in two
ways. Postindexing, discussed in the last section, is one. The other is called direct page indexed indirect
addressing or preindexing and uses the X register. It adds the index to the operand (a direct page base) to
form a direct page offset at which the indirect address (the address of the data to be accessed) is located.

In effect, preindexing lets you index into a double-byte array of absolute memory addresses based in the
direct page to choose the memory location to access; the array begins at the direct page offset specified by the
operand.

Since the array base is a direct page location, adding the direct page register value yields the absolute
location in bank zero. The processor then adds the value in the X register, which is the index into the array of
memory locations. Now the processor finally has an address that holds the memory location you want to
access; it now gets the location and accesses the data at that location. This is shown in Figure 11.2. Since
indexing is done in order to find the indirect address, this addressing mode is also called preindexing.

You'll find preindexing useful for writing routines which need to access data in a number of different
locations in exactly the same way. For example, a tic-tac-toe game drawn on the screen has nine boxes to
which an ‘O’ or an ‘X’ might be written. The tic-tac-toe program might keep internal arrays of information
about the content of each of the nine boxes, as well as arrays of data for working its win-seeking agorithms,
using indexes from O to 8 to represent the locations.

When it comes time for the program to write an ‘X’ to a chosen square, you could, of course, write nine
nearly identical routines which differ only in the address to which the * X" will be written; you would aso have
to write a tenth routine to select which one of the routines needs to be called, based on the value of the box
index (from zero to eight).

When it comes time for the program to write an * X’ to a chosen square, you could, of course, write nine
nearly identical routines which differ only in the address to which the * X" will be written; you would aso have
to write a tenth routine to select which one of the routines needs to be called, based on the value of the box
index (from zero to eight).

A faster and less wasteful method of writing the ‘X’ would be to use pre-indexing. In the section of
code which initially draws the tic-tac-toe grid, you would determine the nine addresses where characters are to
be direct page offset $50; this puts the O location at $50 and $51 (stored, in 65x fashion, low byte in $50 and
high byte in $51), the 1 location at $52 and 53, and so on. The nine addresses use 18 bytes of memory.

When an ‘X’ is to be stored to one of the nine screen locations, only one routine is necessary: you
multiply the box number by two (using the ASL instruction). Remember that each indirect address takes up two
bytesin the direct page array. Transfer it to the X register. Then load an ‘X’ character into the accumulator and
write it to the box on the screen using preindexing as Fragment 11.10 shows.

0000 ADO0080 WRITEX LDA BOXNUMBER get which box towritean ‘X’ to
0003 OA ASL A multiply by two to get index

0004 AA TAX and transfer index to X register

0005 A958 LDA #X write’ X’ character

0007 8150 STA  ($50,X) to scrn location at (dp:$50, index reg)

Fragment 11.10
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Effective Address:

23 15 7 0
Bank High Low
Instruction
Opcode ‘ Operand ‘
65816 Registers:
23 Bank 15 High 7 Low 0
— T
‘ X Index ‘ Register (X) ‘
i:ﬁﬂ—l " > High Indirect Address
00000000 |  Direct | PageRegisier (D) | J+_l_> High Indirect Address
| | Bank 0

Figure 11-2 Preindexing
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Notice the differing syntax: postindexing looked like this:

9128 STA (BASL),Y

In postindexed, the operand locates the direct address, so it’s in parentheses to indicate indirection. The, “Y” is
not in parentheses, since the index register is not part of finding the indirect address — it’s added to the indirect
address once it is found.

On the other hand, with preindexing:
8150 STA ($50,X)

both the operand and the index register are involved in locating the indirect address, so both are in parentheses.

A very different application for preindexing enables the 65x to read from (or write to) severa 1/0
peripherals “at once.” Obvioudy, a microprocessor can only read from one device at a time, so it polls each
device: provided each device uses the same /O controller chip (so that a single routine can check the status of
al devices and read a character from each of them identically), your program can poll the various status
locations using pre-indexing. Begin by storing an array of all the status locations in the direct page. Specify the
base of the array as the operand to preindexed instruction. Load the X index with O and increment it by two
until you’ ve checked the last device. Finally, restore it to zero and cycle through again and again.

If a status check reveals a character waiting to be read, your program can branch to code that actually
reads the character from the device. This time, you'll use preindexing to access a second direct page array of
the character-reading addresses for each device; the index in the X register from the status-checking routine
provides the index into the character-reading routine.

On the 6502, the 65C02, and the 6502 emulation modes, the entire array set up for preindexing must be
in the direct page. (On the 6502 and 65C02, this means the array must be entirely in the zero page which,
unfortunately, severely limits the use of preindexing due to the competition for zero page locations.) If the
specified direct page offset plus the index in the X exceeds $FF, the array wraps around within the direct page
rather than extending beyond it. That is,

A21A LDX HS1A
followed by
A1FO LDA ($FO,X)

would load the accumulator from the indirect address in location $0A not $10A.

On the 65802 and 65816 (in native mode), the array must still start in the direct page but wraps,
not at the end of the direct page but at the end of bank zero, when the array base plus the D direct page
setting plus the X index exceeds $00: FFFF.

On the 65816, the data that is ultimately accessed (after the indirection) is always in the data
bank.

Absolute Indexed Indirect Addressing

The 65C02 introduced a new addressing mode, absolute indexed indirect addressing, which is quite
similar to direct page indexed indirect. (It is aso preindexed using the X index register, but indexes into
absolute addressed memory rather than the direct page to find the indirect address.) This new addressing mode
is used only by the jump instruction and, on the 65802 and 65816, the jump-to-subroutine instruction.

Absolute indexed indirect provides a method for your program, not to access data in scattered locations
by putting the locations of the data into a table and indexing into it, but to jump to routines at various locations
by putting those locations into a table, indexing into it, and jumping to the location stored in the stored in the
table at the index. Figure 11.3 shows what happens.
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A menu-driven program, for example, could ask users to respond to a prompt by pressing a number key
from 0" through ‘7. Your program would convert the key's value to an index by subtracting the ASCII value
of ‘0" and doubling the result (to reflect the fact that each table entry is an address and thus takes two bytes in
the table) (Fragment 11.11). It would then jump indexed indirect to a routine appropriate to the menu choice.

0000 ; get menu choice into accumul ator

0000

0000 38 SEC set carry before subtract
0001  E93000 SBC #0O convert’0’-'7’ to 0-7
0004 OA ASL A times 2 = index

0005 AA TAX transfer index to X
0006  7C0900 JMP  (TABLE,X) jump to address TABLE + X
0009

0009 0080 TABLE DC  A’ROUTINO routine for reason ‘0’
000B 0080 DC A’ROUTINY menu response ‘1’
000D 0080 DC A’ROUTINZ menu response ‘2’

000F 0080 DC A’ROUTIN3 menu response ‘3’

0011 0080 DC A’ROUTIN4 menu response ‘4’

0013 0080 DC A’ROUTINY menu response ‘5’

0015 0080 DC A’ROUTIN®E menu response ‘ 6’

0017 0080 DC  A’ROUTIN? menu response ' 7’

Fragment 11.11
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Effective Address. New Program Counter Value
23 15 7 0
| Bank | High | Low
T |

Instruction:
| Opcode | OperandLow | Operand High |

|
65816 Registers: '

. Bank N High Low . —p  High Indirect Address

7
| X Index | Register (X) ] Pty

it |

Low Indirect Address

Program Bank

| Program Bank (PBR) |
[

Figure 11-3 Absolute Indexed Indirect

Because both the operand (the absolute address of the base of the table) and the index register are involved in
determining the indirect address, both are within the parentheses.

On the 65816, a jump-indirect operand is in bank zero, but a jump-indexed-indirect operand is in the
program bank. There is a different assumption for each mode. Jump indirect assumes that the indirect address
to be jumped to was stored by the program in a variable memory cell; such variables are generaly in bank zero.
Jump indexed indirect, on the other hand, assumes that a table of locations of routines would be part of the
program itself and would be loaded, right along with the routines, into the bank holding the program. So,

6C3412 JMP ($1234) jump to address stored at $00:1234.1235
assumes $1234 isin a double-byte cell in bank zero. But
7C3412 JMP (1234,X) jump to address stored at pb:$1234,X

assumes $1234 is in the program bank, the bank in which the code currently being executed resides.
The indirect addresses stored in the table are absolute addresses also assumed to be in the current

program bank.

Direct Page Indirect Long Indexed with Y Addressing

The 65816 can access sixteen megabytes of memory, yet lets you access most data (data located in the
current data bank) with just two bytes. Nevertheless, there are times when data must be accessed in a bank
other than the current data bank when it would be inconvenient to change the data bank, then change it back.
As Chapter 7 pointed out, this problem is solved by the “long” addressing modes, which allow three bytes (the
bank in addition to the address within the bank) to specify a full 24-bit address. This solution lets you access
the 65816’ s full sixteen-megabyte address space. Probably the most useful way to reference data outside of the
current data bank is viathe direct page indirect long indexed with Y, or postindexed long, addressing mode.
Thisisthe long version of direct page indirect indexed addressing, discussed earlier in this chapter.

Instructions are two bytes in length, as shown in Fragment 11.4: The opcode is followed by a single
byte, which is a direct page offset in bank zero. The indirect address stored in the direct page (to which the
operand points) is, in the long version, three bytes (a full 24-bit address); the byte at the direct page offset is the
low byte of the 24-bit address, the byte in the next direct page location the middie byte of the 24-bit address,
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and the byte in the third location the bank byte of the 24-bit address. The contents of the Y index register are
added to this 24-bit address to form the 24-bit effective address at which data will be accessed.
The syntax for postindexed long is:

B715 LDA [$15],Y

The sguare brackets are used to indicate the indirect address is long.

So, like its sixteen-bit counterpart, indirect long indexed addressing alows you to index into an array of
which neither the base nor the index need be determined until the program is executing. Unlike its sixteen-bit
counterpart, it allows you to access an array in any bank, not just the current data bank.

Stack Relative Addressing

Possibly the most exciting new addressing method introduced by the 65802 and 65816 is stack relative.
Thisisthe first 65x method for directly accessing a stack byte other than the last data item pushed.

Stack relative addressing lets you easily access any byte or address in the last $FF bytes stacked.
Instructions using stack relative addressing are two bytes long, the operand a single byte that is an index into the
stack. AsFigure 11.5 shows, the stack is treated as an array with its base the address in the stack pointer. The
operand is added to the stack pointer value to form the bank zero effective address which will be accessed.

This can be especialy useful when one part of a program needs to send data to another part of the
program, such as a multiply routine. The two sixteen-bit values to be multiplied are pushed onto the stack in
one part of the program. Later, the multiply routine loads one of the operands using stack relative addressing,
leaving both the other operand and the stack pointer undisturbed:

A303 LDA 3,S load first operand
or
A301 LDA 3,S load second operand

Notice that accessing the last data put on the stack requires an index of 1, not of 0. Thisis because the
stack pointer always points to the next available location, which is one byte below the last byte pushed onto the
stack. An index of zero would generally be meaningless, except perhaps to re-read the last byte pulled off the
stack! (The latter would also be extremely dangerous since, should an interrupt occur, the left-behind byte
would be overwritten by interrupt-stacked bytes.)
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Effective Address:
23 15 7 0
| Bank | High | Low |
|
Instruction:
| Opcode | Operand |
7| Bank Indirect Address
65816 Registers: | | | High Indirect Address —|
. +1 "
Bank High Low . —L | LowIndirect Address N
23 15 7 0 Bank O
| Y Index | Register (Y) |
x=1m
x=0
0000 0000 Direct | 29€ Register

(D)
L

Figure 11-4 Postindexed L ong
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Effective Address:

23 15 7 0
| Bank | High | Low |
|

Instruction: 00000000

| Opcode | Operand |

65816 Registers:

Bank High Low
23 15 7 0
0000 0000 Stack | Pointers(S) |+

Figure 11-5 Stack Relative

Stack Relative Indirect Indexed Addressing

While the stack relative addressing mode serves to access data on the stack, the stack relative indirect
indexed addressing mode lets you access data indirectly through addresses that have been pushed onto the
stack.

Change the previous example: Instead of stacking the two sixteen-bit values to be multiplied, the values
are found in memory cells in the data bank, one after the other (occupying four consecutive bytes), and it’s the
address of the first that is pushed onto the stack. Now, Fragment 11.12 shows, either value can be loaded using
the stack indirect address:

0000 A00000 LDY #0

0003 B301 LDA 1,9,y load first 16-bit multiply operand
0005 AA TAX savefirst value

0006 A00200 LDY #2

0009 B301 LDA (1,9),Y load second 16-bit multiply operand

Fragment 11.12

The 1,S is the stack location where the indirect address was pushed. (Actualy, 1,S points to the stack
location of the low byte of the indirect address; the high byte isin 2,S, the next higher stack location.) To this
indirect address, the value in the Y is added: the indirect address plus O locates the first value to be multiplied;
the indirect address plus 2 locates the second. Finally the accumulator is loaded from this indirect indexed
address. Figure 11.6 illustrates the sequence.

This mode, very similar to direct page indirect indexing (also called postindexing), might be called
“stack postindexing.” The operand which indexes into the stack is very similar to a direct page address; both are
limited to eight bits and both are added to a sixteen-bit base register (D or S). In both cases, the indirect address
points to a cell or an array in the data bank. In both cases, Y must be the index register. And in both cases in
the 65816, the postindexed indirect address about to be accessed may extend out of the data bank and into the
next bank if index plus address exceeds $FFFF; that is, if the indirect address is the base of an array, the array
can extend into the next bank.
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Push Effective Instructions

Effective Address:

23 15 7 0
| Bank | High | Cow |
Instruction:
| Opcode | Operand |
65816 Registers:
Bank High Low
| DataBank (DBR) |
| M
Stack
LI’ High Indirect Address
+ l > Low Indirect Address +
[ Vindex| Register (Y) | Bk 0
X=1 A
x=0
[ 0000 0000 | Stack [ Pointer (S) |

Figure 11-6 Stack Relative Indirect Indexed

As Figure 11.7 shows, the PEA(push effective absolute address) instruction

pushes the operand, a The 65802 and the 65816 provide three instructions which push, not registers, but
absolute, indirect, and relative addresses straight onto the stack. These three instructions are PEA, PEI, and
PER, the push effective address instructions. Addresses so pushed might be accessed, for example, using the
stack relative indirect indexed addressing mode just discussed. Chapter 6, which introduced the push
instructions in the context of data movement, deferred discussion of these three instructions to this chapter.
Except for the block move instructions, these are the only instructions that move data directly from one memory
location to another.

16-bit absolute address or immediate data word, onto the stack. For example,

F43421 PEA $2134 push $2134 onto the stack

pushes what may be either sixteen-bit immediate data or a sixteen-bit address onto the stack. The operand
pushed by the PEA instruction is always 16 bits regardless of the settings of the m memory/accumulator and x
index mode select flags.

The PEI (push effective indirect address) instruction has, as an operand, a direct page location: it's the
sixteen-bit value stored at the location that is pushed onto the stack. Figure 11.8 shows that this has the effect of
pushing either an indirect address or sixteen bits of direct page data onto the stack. For example, if you had
stored the value or indirect address $5678 at direct page location $21, then

D421 PEI (%$21) push two bytes at dp:$21 and dp:$22
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would get the $5678 from direct page location and push it onto the stack. Like the PEA instruction, the PEI
instruction always pushes sixteen bits regardless of the settings of the m memory/accumulator and x index node
select flags.

The PER (push effective relative) instruction pushes an effective program counter relative address onto
the stack, a capability helpful in writing relocatable code. The operand you specify to the assembler is a
location in the program, for example, of a data area; the operand the assembler generates is a sixteen-bit relative
displacement, the difference between the nest instruction’s address and the operand address. Figure 11.9 shows
that when the instruction is executed, the displacement is added to the next instruction’s run-time address to
form the address at which the data is now located it is this address which is pushed onto the stack. If the data
location precedes the PER instruction, the assembler generates a very large sixteen-hbit displacement which,
when added to the program counter value, will wrap around within the program bank to reach the data.

The operation of the PER instruction is similar to the operation of the BRL (branch long) instruction:
the branch long operand you specify to the assembler isalso a

Instruction:
Obcode DatalLow = DataHigh=
b Operand Low Operand High
Stack
Stack| | Pointer (S) > Data High P —
Data L ow
after
v _— >
|

Bank O

Figure 11-7 PEA Addressing
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Effective Address:

23 15 7
| Bank | High | Low
0000 0000
I nstruction:
| Opcode | Operand |
65816 Registers: |
Bank High Low |
23 15 7 0  E—

Direct | Page Register (D) |

0000 0000 |

High Indirect Address |

Low Indirect Address ||

Bank O

Stack

High Indirect Address

Low Indirect Address <

Source
Effective Address + :L>
Source >
Effective Address
before >
Stack | Pointer (S) |
after >
v

Bank O

Figure 11-8 PEI Addressing
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Instruction:
| Opcode | OpeandLow | OperandHigh ]
+ —Pp Data
Register:
15 7 0
| Program | Counter (PC) |
before Stack
e Data High Data
Stack | Pointer (S) | after Data Low
dter_y,
v
Bank O

Figure 11-9. PER Addressing

location in the program; the operand the assembler generates is also a sixteen-hit displacement; and
when the instruction is executed, the displacement is added to the next instruction’s run-time address
to form the address to which the program will branch.

To understand the use of the PER instruction, together with the relative branches, in writing a
program that will run at any address, suppose that your relocatable program is assembled starting at
location $2000. There's a data area starting at location $2500 called DATAOQ. A section of program
code at $2200 needs to access a byte three bytes past, called DATAL. A simple LDA $2503 would
work, but only if the program were intended to always begin at location $2000. If it's meant to be
relocatable, you might load the program at $3000, in which case the datais at $3503 and a L DA $2503
loads the accumulator with random information from what is now a non-program address. Using the
instruction

62E17F PER DATAS push address of DATA3 relativeto PC

in your source program causes the assembler to calculate the offset from $2203 (from the instruction
following the PER instruction at $2200) to DATAL at $2503, an offset of $300. So the assembler
generates object code of a PER opcode followed by $300. Now if the code is loaded at $3000,
execution of the PER instruction causes the processor to calculate and stack the current absolute
address of DATAL by adding the operand, $300, to the current program counter location; the result is
$3503, 0 it's $3503 that’s stacked. Once on the stack, provided the program and data banks are the
same, the data can be accessed using stack relative indirect indexed addressing. Fragment 11.13
contains the example code.

Once the address of DATAL is on the stack, the values aa DATA2 and DATA3 can be
accessed as well ssimply by using values of one and two, respectively, inthe Y index register.
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0000
0000
0000
0000
0003
0005
0008
000A
000A
000A
000A
000A
000A

0000
0000
0000
0000
0003
0004
0005
0006
0006

62FD7F
E220
A00000
B301

2A2A2A
FF
F7
E3

ACCESS

DATAO

DATA1
DATAZ2
DATAS

ORG $2200
START

PER DATA1
SEP #520
LDY #0
LDA 19),Y
END

ORG  $2500
START

DC Crexs
DC H'FF
DC H F7
DC H E3
END

push run-time address of DATA1 onto stack
set accum to 8-bit mode

zero index: DATAl iscell, not array

load accum from DATA1 in data ban
(address of DATAL @ 1,S & 2,9)

Fragment 11.13
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12) Chapter Twelve

The Basic Building Block:
The Subroutine

The feature essential to any processor to support efficient, compact code, as well as modular or top-
down programming methods, is a means of defining a subroutine. A subroutine is a block of code that can be
entered (called) repeatedly from various parts of a main program, and that can automatically return control to
the instruction following the calling instruction, wherever it may be. The 65x jump-to-subroutine instruction
provides just such a capability.

When a jump-to-subroutine, or JSR, instruction is encountered, the processor first pushes its current
location onto the stack for purposes of returning, then jumps to the beginning of the subroutine code. At the end
of the subroutine code, a return-from-subroutine (RTS) instruction tells the processor to return from the
subroutine to the instruction after the subroutine call, which it locates by pulling the previously saved return
location from the stack.

Because subroutines let you write a recurring section of program code just once and call it from each
place that it's needed, they are the basis of top-down, structured programming. Common subroutines are often
collected together by programmers to form alibrary, from which they can be selected and reused as needed.

Chapter 8, Flow of Control, introduced the 65x jump instructions — those flow-of-control instructions
which do not use the stack for return purposes. But discussion of the jump-to-subroutine instructions was put
off to this chapter.

Table 12.1 lists the instructions to be explained in this chapter. In addition, this chapter will use the
simple example of a negation routine to illustrate how library routines (and routines in general) are written and
documented, and it examines the question of when to code a subroutine and when to use in-line code. Finally,
methods of passing information (or parameter s) to and from subroutines are compared and illustrated.

Available on:
Mnemonic 6502 65C02 65802/816 Description
65x Subroutine Instructions:
JSR X X X jump to subroutine
RTS X X X return from subroutine
JSL X long jump to subroutine
RTL X long return from subroutine

Table 12-1 Subroutine Instructions
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The Jump-To-Subroutine Instruction

There is just one addressing mode available to the JSR instruction on the 6502 and 65C02 — absolute
addressing. This mode lets you code a subroutine call to a known location. When used on the 65816, that
location must be within the current program bank. It uses the absolute addressing syntax introduced earlier:

200020 JSR $2000 jump to subroutine located at pb:$2000
or
200080 JSR SUBR1 jump to subroutine SUBR1 in program bank

In the second case, the assembler determines the address of subroutine SUBR1.

The processor, upon encountering a jump-to-subroutine instruction, first saves a return address. The
address saved is the address of the last byte of the JSR instruction (the address of the last byte of the operand),
not the address of the next instruction as is the case with some other processors. The address is pushed onto the
stack in standard 65x order —the low byte in the lower address, the high byte in the higher address — and done in
standard 65x fashion — the first byte is stored at the location pointed to by the stack pointer, the stack pointer is
decremented, the second byte is stored, and the stack pointer is decremented again. Once the return address has
been saved onto the stack, the processor loads the program counter with the operand value, thus jumping to the
operand location, as shown in Figure 12.1. Jumping to a subroutine has no effect on the status register flags.

The Return-from-Subroutine I nstruction
At the end of each subroutine you write, the one-byte RTS, or return-from-subroutine, instruction

must be coded. When the return-from-subroutine instruction is executed, the processor pulls the stored address
from the stack, incrementing the stack
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Effective Address: New Program Counter Value
23 15 7 0
| Bank | High | Low |

I nstruction:
| Opcode | Operand Low | Operand High |

N

65816 Registers: ’

23 Bank 15 High 7 Low 0
| Program Bank (PBR) |

[
| Program | Counter (PC) | Stack | pefore
| Addressof last JSR Return Address High |
instruction byte Return Address Low | Stack Pointer |

‘ afterv

Bank O

Figure12-1 JSR

pointer by one before retrieving each of the two bytes to which it points. But the return address that was stored
on the stack was the address of the third byte of the JSR instruction. When the processor pulls the return
address off the stack, it automatically increments the address by one so that it points to the instruction following
the JSR instruction which should be executed when the subroutine is done. The processor loads this
incremented return address into the program counter and continues execution from the instruction following the
original JSR instruction, as Figure 12.2 shows.

The processor assumes that the two bytes at the top of the stack are a return address stored by a JSR
instruction and that these bytes got there as the result of a previous L SR. But as aresult, if the subroutine used
the stack and |eft it pointing to data other than the return address, the RTS instruction will pull two irrelevant
data bytes as the address to return to. Cleaning up the stack after using it within a subroutine is therefore
imperative.

The useful side of the processor’s inability to discern whether the address at the top of the stack was
pushed there by a JSR instruction is that you can write a reentrant indirect jump using the RTS instruction.
First formulate the address to be jumped to, then decrement it by one (or better, start with an already-
decremented address), push it onto the stack (pushing first high byte, then low byte, so that it isin correct 65x
order on the stack) and, finally, code an RT S instruction. The return-from-subroutine pulls the address back off
the stack, increments it, and loads the result into the program counter to cause a jump to the location, as
Fragment 12.1 illustrates.

0000 ;  16-bit accumulator holds address of code to jump to

0000 3A DEC A DEST — 1: address of byte before target
0001 48 PHA push it; now addressis stacked as tho JSR
0002 60 RTS pull address; increment it; transfer control

Fragment 12.1

Reentrancy is the ability of a section of code to be interrupted, then executed by the interrupting
routine, and still execute properly both for the interrupting routine and for the origina routine when control is
returned to it. The interruption may be aresult of a hardware interrupt (as described in the next chapter), or the
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result of the routine calling itself, in which case the routine is said to be recursive. The keys to reentrancy are,
first, to be sure you save al important registers before reentering and, second to use no fixed memory locations
in the reentrant code. (There will be more on interrupts and reentrancy in the next chapters.)

R Stack
aft i
4 PC H|gh +3’ Program Counter (PC)
Stack| Pointer (99| PC Low
beforﬁ
Bank O

Figure12-2 RTS

The indirect jump using RTS qualifies for reentrancy: While normally you would code an indirect jJump
by forming the address to jump to and storing it to an absolute address, then jumping indirect through the
address, this jump by use of RT S uses only registers and stack.

A subroutine can have more than one RTS instruction. 1t's common for subroutine from internal loops
upon certain error conditions, in addition to returning normally from one or more locations. Some structured
programming purists would object to this practice, but the efficiency of having multiple exit points is
unquestionable.

Returning from a subroutine does not affect the status flags.

JRS Using Absolute Indexed Indirect Addressing

The 65802/65816 gives JSR another addressing mode — absolute indexed indirect (covered in the last
chapter) which lets your program select, on the basis of the index in the register, a subroutine location from a
table of such locations and call it:

FC0080 JSR (TABLE,X) JSR to indirect address in (TABLE at X)

The array Table must be located in the program bank. The addressing mode assumes that a table of locations of
routines would be part of the program itself and would be loaded, right along with the routines, into the bank
holding the program. The indirect address (the address with which the program counter will be loaded), a
sixteen-bit value, is concatenated with the program bank register, resulting in a transfer within the current
program bank. If the addition of X causes a result greater than $FFFF, the effective address will wrap,
remaining in the current program bank, unlike the indexing across banks that occurs for data accesses.

This addressing mode also lets you do an indirect jump-to-subroutine through a single double-byte cell
by first loading the X register with zero. You must remember in coding this use for the 65816, however, that
the cell holding the indirect addressisin the program bank, not bank zero as with absolute indirect jumps.

The indexed indirect jump-to-subroutine is executed in virtually the same manner as the absolute jump-
to-subroutine: the processor pushes the address of the final byte of the instruction onto the stack as a return
address; then the address in the double-byte cell pointed to by the sum of the operand and the X index register is
loaded into the program counter.

There is no difference between returning from a subroutine called by this instruction and returning from
a subroutine called by an absolute JSR. You code an RTS instruction which, when executed, causes the
address on the top of the stack to be pulled and incremented to point to the instruction following the JSR, then
to be loaded into the program counter to give control to that instruction.
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The Long Jump to Subroutine

A third jump-to-subroutine addressing mode is provided for programming in the 16-megabyte address
space of the 65816 — absolute long addressing.  Jump-to-subroutine absolute long is a four-byte instruction, the
operand a 24-bit address in standard 65x order (the low byte of the 24-bit address is in the lowest memory
location immediately following the opcode and the high byte is next, followed by the bank byte):

22563412 JSR $123456 jump to subroutine at $3456 in bank $12

This time a three-byte (long) return address is pushed onto the stack. Again it is not the address of the
next instruction but rather the address of the last byte of the JSR instruction which pushed onto the stack (the
address of the fourth byte the JSR instruction in this case). As Figure 12.3 shows, the address is pushed onto
the stack in standard 65x order: low byte in the lower address, high byte in the higher address, bank byte in the
highest address (which also means the bank byte is the first of the three pushed, the low byte last).

Jumping long to a bank zero subroutine requires the greater-than (>) sign, as explained in the last
chapter:

22563400 JSR >$3456 long jump to subroutine at $3456 in bank 0

The greater-than sign forces long addressing to bank zero, voiding the assembler’s norma assumption to use
absolute addressing to jump to a subroutine at $3456 in the current program bank.

To avoid this confusion atogether, there is an equivalent standard mnemonic for jump-to-subroutine
long —JSL:

22563400 JSL $3456 long jump to subroutine at $3456 in bank 0
or
22563402 JSL $023456 long jump to subroutine at $3456 in bank 2

Using an aternate mnemonic is particularly appropriate for jump-to-subroutine long, since this
instruction requires you to use an entirely different return-from-subroutine instruction — RTL, or retur n-from-
subroutine long.

Stack before
Return Address Return Address Bank 1
Return Address High | Stack | Pointer (S)
(last ISR instruction byte) Return Address Low
after v
N
Bank O

Figure 12-3 JSL

Return from Subroutine Long

The return from subroutine instruction pops two bytes off the stack as an absolute address, increments
it, and jumps there. But the jJump to subroutine long instruction pushes a three-byte address onto the stack — a
long return address that points to the origina code, and is typically in abank different from the subroutine bank.

So the 65816 provides a return from subroutine long instruction, RTL. This return instruction first
pulls, increments, and loads the program counter, just as RTS does; then it pulls and loads a third byte, the
program bank register, to jump long to the return address. Thisisillustrated in Figure 12.4.
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Branch to Subroutine

One of the glaring deficiencies of the 6502 was its lack of support for writing rel ocatable code;
the 65802 and 65816 address this deficiency, but still lack the branch-to-subroutine instruction some
other processors provide. Thereis no instruction that lets you call a subroutine with an operand that is
program counter relative, not an absolute address. Yet, to write relocatable code easily, a BSR
instruction is required: suppose a relocatable program assembled at $0 has an often-called multiply
subroutine at $07FE; if the program is later loaded at $7000, that subroutine is at $77FE; obviously, a
JSR to $07FE will fail.

A after Stack
— »{ Progran Bank (PBR) | |—| [ Program Bank (PBR) |
Stack | Pointer (S) | PC High
before PC Low }~ +1 ->|| Program | Counter (PC)
47
Bank 0

Figure 12-4 RTL

The 65802 and 65816 can synthesize the BSR function using their PER instruction. You use PER to
compute and push the current run-time return address; since its operand is the return address' relative offset
(from the current address of the PER instruction), PER provides relocatability. As Fragment 12.2 shows, once
the correct return address is on the stack, a BRA or BRL completes the synthesized BSR operation.

0000

0000

0000

0000 62FCT7F PER  RETURN-1 push run-time return address
0003 82FATF BRL SUBR1 intra-bank relative branch is BSR
0006 RETURN . continue processing here
0006 .

0006

0006

0006

0006 SUBR1

0006 . execute subroutine function
0006

0006 .

0006 60 RTS return from subroutine

Fragment 12.2

In this case, you specify as the assembler operand the symbolic location of the routine you want to
return to minus one. Remember that the return address on the stack is pulled, then incremented, before control
is passed to it. The assembler transforms the source code operand, RETURN — 1, into the instruction’s object
code operand, a relative displacement from the next instruction to RETURN — 1. In this case, the displacement
is $0002, the difference between the first byte of the BRL instruction and its last byte. (Remember, PER works
the same as the BRL instruction; in both cases, the assembler turns the location you specify into a relative
displacement from the program counter.) When the instruction is executed, the processor adds the displacement
($0002, in this case) to the current program counter address (the address of the BRL instruction); the resulting
sum is the current absolute address of RETURN — 1, which iswhat is pushed onto the stack.
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If at run-time the PER instruction is at $1000, then the BRL instruction will be at $1003, and
RETURN at $1006. Execution of PER pushes $1005 onto the stack, and the program branches to SUBR1.
The RTS at the end of the subroutine causes the $1005 to be pulled from the stack, incremented to $1006 (the
address of RETURN), and loaded into the program counter.

If, on the other hand, the instructions are at $2000, $2003, and $2006, then $2005 is pushed onto the
stack by execution of PER, then pulled off again when RTS is encountered, incremented to $2006 (the current
run-time address of RETURN), and loaded into the program counter.

If a macro assembler is available, synthetic instructions such as this are best dealt with by burying this
code in asingle macro call.

Coding a Subroutine: How and When

The uses of subroutines are many. At the simplest level, they let you compact in a single location
instructions that would otherwise be repeated if coded in-line. Programmers often build up libraries of genera
subroutines from which they can pluck the routine they want for use in a particular program; even if the routine
isonly called once, this allows quick coding of commonly used functions.

The next few pages will look at a ssmple logic function for the 65x processors — forming the negation
(two’s complement) of eight- and sixteen-bit numbers — and how such aroutine is written. Also covered is how
subroutinesin general (and library routines in particular) should be documented.

The 65x processors have no negate instruction, so the two’s complement is formed by complementing
the number (one’s complement) and adding one.

6502 Eight-Bit Negation — A Library Example

If the value to be negated is an eight-bit value, the routinein Listing 12.1 will yield the desired result.

0001 0000 KEEP KL.12.1
0002 0000
0003 0000 ; NEGACC - -
0004 0000 ;
0005 0000 ; Negate the 8-bit value in the accumulator
0006 0000 ; On entry: Value to be negated is in accumulator
0007 0000 ; On exit: Vaue now negated is in accumulator
0008 0000
0009 0000 NEGACC START
0010 0000  46FF EOR #$11111111 form one's complement
0011 0002 18 CLC prepare to add one
0012 0003 6901 ADC #1 add one
0013 0005 60 RTS return
0014 0006 END
Listing 12.1

It is extremely important to clearly document library routines. Perhaps the best approach is to begin
with a block comment at the head of the routine, describing its name, what the routine does, what it expects as
input, what direct page locations it uses during execution, if the contents of any registers or any memory specia
locations are modified during execution, and how and where results are returned.

By documenting the entry and exit conditions as part of the header, as in the example, when the routine
is used from a library you won't have to read the code to get this information. Although this example is quite
simple, when applied to larger, more complex subroutines, the principle is the same: document the entry and
exit conditions, the function performed, and any side effects.

As a subroutine, this code to negate the accumulator takes six bytes. Each JSR instruction takes three.
So calling it twice from a single program requires 12 bytes of code; if called three times, 15 bytes; if four, 18
bytes.
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On the other hand, if this code were in-line once, it would take only five bytes, but each additional time
it is needed would require another five bytes, so using it twice takes 10 bytes, three times takes 15, and four
times takes 20. Y ou can seethat only if you need to negate the accumulator four or more times does calling as a
subroutine make sense in view of object byte economy.

65C02, 65802, and 65816 Eight-Bit Negation

The addition of the accumulator addressing mode for the INC increment instruction on the
65C02, 65802, and 65816 means no subroutine is required for negating an eight-bit value in the
accumulator on these processors: the in-line code in Fragment 12.3 takes only three bytes.

0000 49FF EOR  #%11111111 form one's complement of accum
0002 1A INC A increment the accum by one

Fragment 12.3.

Since the in-line code takes the same number of bytes as the JSR instruction, you would lose four bytes (the
number in the subroutine itself) by calling it as a subroutine.

6502 Sixteen-Bit Negation

Negating sixteen-bit values makes even more sense as a subroutine on the 6502. One method, given the
previously-coded routine NEGACC, isshown in Listing 12.2.

0001 0000 KEEP KL.12.2
0002 0000
0003 0000
0004 0000 ; Negate the 16-bit value in registers X — A (hi-lo)
0005 0000 ; Onentry:  Vaueto benegated isin X — A (hi-lo)
0006 0000 ; On exit: Vaue now negated isin A =Y (hi-lo)
0007 0000 ; X isunchanged
0008 0000 ; must be linked with NEGACC
0009 0000
0010 0000 NEGXA  START
0011 0000 ; first call the 8-bit negation routine defined a few pages back
0012 0000 200080 JSR NEGACC negate the low 8 bits in the accum
0013 0003 ; then get and negate the high 8 bits
0014 0003 A8 TAY
0015 0004 B8A TXA get high 8 bitsinto accum
0016 0005  49FF EOR #%11111111  form on€’s complement
0017 0007 6900 ADC add carry from adding 1 to low byte
0018 0009 60 RTS return
0019  000A END
Listing 12.2

Here, one subroutine (NEGXA) calls another (the subroutine described previously that negates eight
bits).

65802 and 65816 Sixteen-Bit Negation

Fragment 12.4 shows that on the 65802 and 65816, the sixteen-bit accumulator can be negated in-linein
only four bytes. As aresult, a subroutine to negate the sixteen-bit accumulator would be inefficient, requiring
five calls to catch up with the on-byte difference; in addition, you should note that there is a speed penalty
associated with calling a subroutine — the time required to executed the JSR and RT S instructions.
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0000  49FFFF EOR H#FFFF form one's complement of accum
0003 1A INC A increment the accum by one

Fragment 12.4

Parameter Passing

When dealing with subroutines, which by definition are generalized pieces of code used over and over
again, the question of how to give the subroutine the information needed to perform its function must be
considered. Values passed to or from subroutines are referred to as the parameters of the subroutine.
Parameters can include values to be acted upon, such as two numbers to be multiplied, or may be information
that defines the context or range of activity of the subroutine. For example, a subroutine parameter could be the
address of aregion of memory to work on or in, rather than the actual data itself.

The preceding examples demonstrated one of the simplest methods of parameter-passing, by using the
registers. Since many of the operations that are coded are subroutines in assembly language are primitives that
operate on a single element, like “print a character on the output device” or “convert this character from binary
to hexadecimal,” passing parameters in registers is probably the approach most commonly found.

A natural extension of this approach, which is particularly appropriate for the 65802 and 65816, but
also possible on the 6502 and 65C02, is to pass the address of a parameter list in a register (or, on the 6502 and
65C02, in two registers). Listing 12.3 gives example.
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0001 0000 KEEP KL.12.3
0002 0000 65816 ON
0003 0000
0004 0000 L123 START
0005 0000 18 CLC
0006 0001 FB XCE
0007 0002
0008 0002 E220 SEP #$20 8-bit accumulator
0009 0004 LONGA OFF
0010 0004
0011 0004 C210 REP #$10 16-bit index register
0012 0006 LONGI ON
0013 0006
0014 0006 A21500 LDX #STRING1 pass the address of STRINGL1 to PRSTRNG
0015 0009 2000080 JSR PRSTRNG print STRING1
0016 000C
0017 000C  A22800 LDX #STRING2 pass the address of STRING2 to PRSTRNG
0018 000F 200080 JSR PRSTRNG print STRING2
0019 0012
0020 0012 38 SEC
0021 0013 FB XCE
0022 0014 60 RTS
0023 0015
0024 0015 54686973 STRING1 DC C'Thisisstring one', H ‘00’
0025 0028 54686973 STRING2 DC C ‘Thisisstring two’', H ‘00’
0026 003B
0027 003B END
0028 0000
0029 0000 ; print astring of characters terminated by a 0 byte
0030 0000 ; on entry: X register holds location of string
0031 0000
0032 0000 PRSTRNG START
0033 0000 BD0000 TOP LDA 10,X get char at index position in string
0034 0003 FO06 BEQ DONE if character is O, return
0035 0005 200080 JSR CcouT print character in accum
0036 0008 E8 INX
0037 0009 80F5 BRA TOP
0038 000B 60 DONE RTS
0039 000C
0040  000C END
0041 0000
0042 0000 ; CcouT
0043 0000 ; machine-dependent routine to output a character
0044 0000 ;
0045 0000 CouT START
0046 0000 ECOUT GEQU $FDED Apple// COUT
0047 0000 48 PHA Saveregisters
0048 0001 DA PHX
0049 0002 5A PHY
0050 0003 08 PHP and status,
0051 0004 38 SEC switch to emulation
0052 0005 FB XCE
0053 0006 20EDFD JSR ECOUT call 6502 routine
0054 0009 18 CLC
0055 000A FB XCE restore native mode
0056 000B 28 PLP restore status
0057 0o00C  7A PLY restore register
0058 000D FA PLX return
0059 000E 68 PLA
0060 O000F 60 RTS
0061 0010 END
Listing 12.3
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By loading the X register with the address of a string constant, the subroutine PRSTRNG has al the
information it needs to print the string at that address each time it is called. The data at the address passed in a
register could also be a more complex data structure than a string constant.

On the 6502 and 65C02, a sixteen-bit address has to be passed in two registers. Because of this,
parameters are often passed in fixed memory locations. Typically, these might be direct page addresses.
Listing 12.4 gives an example of this method.

0001 0000 KEEP KL.12.4
0002 0000
0003 0000
0004 0000 ; 6502/65C02 example
0005 0000
0006 0000 PEX START
0007 0000
0008 0000 PARAM GEQU $80
0009 0000
0010 0000 A200 LDX #>STRING1  load high byte of STRINGY1's address
0011 0002 8681 STX PARAM+1 store the high byte of direct page cell
0012 0004 A20C LDX #<STRING1 load low byte of STRING1's address
0013 0006 8680 STX PARAM store to low byte of direct page cell
0014 0008 2000080 JSR PRSTRNG print STRING1
0015 0008 60 RTS
0016  00OC
0017 000C 54686973 STRING1 DC C ‘Thisisstring one’, H' 00’
0018  001F
0019 O001F END
0020 0000
0021 0000 ; print a string of characters terminated by a0 byte
0022 0000 ; on entry: direct page location PARAM holds address of string
0023 0000
0024 0000 PRSTRNG START
0025 0000 CouT GEQU $FDED Apple/ / output routine
0026 0000
0027 0000 AO000 LDY #0 start at string position zero
0028 0002 B180 LOOP LDA (PARAM),Y  get char at index position in string
0029 0004 FOO6 BEQ DONE if character isO, return
0030 0006 20EDFD JSR CouT print character in accum
0031 0009 C8 INY point to next char
0032 O000A DOF6 BNE LOOP loop thru string: must be < 256
0033 000C 60 DONE RTS
0034 000D
0035 000D
0036 000D END
Listing 12.4

Unfortunately, it takes eight bytes to set up PARAM each time PRSTRNG is caled. As aresult, a
frequently used method of passing parameters to a subroutine is to code the data in-line, immediately following
the subroutine call. This technique (see Fragment 12.5) uses no registers and no data memory, only program
memory.

184



The Western Design Center

0000

0000 .

0000 2000080 JSR  PRSTRNG print the following string
0003 54686520 DC  C'Thestring to be printed’, H ‘00’
001C REUTRN . execution continues here
001C

001C

001C

001C

Fragment 12.5

This method looks, at first glance, bizarre. Normally, when a subroutine returns to the calling section of
code, the instruction immediately following the JSR is executed. Obvioudly, in this example, the data stored at
that location is not executable code, but string data.  Execution should resume instead at the label RETURN,
which is exactly what happens using the PRSTRNG coded in Listing 12.5. The return address pushed onto the
stack by the JSR is not areturn address at al; it is, rather, the parameter to PRSTRNG.
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0001 0000 KEEP KL.12.5
0002 0000 65816 ON
0003 0000
0004 0000 PRSTRNG START
0005 0000
0006 0000 18 CLC
0007 0001 FB XCE
0008 0002
0009 0002 E220 SEP #$20 8-bit accum
0010 0004 LONGA OFF
0011 0004
0012 0004 C210 REP #$10 16-bit index regs
0013 0006 LONGI ON
0014 0006
0015 0006 FA PLX pull return address
0016 0007 E8 INX and increment to point JSR to string
0017 0008 BD0000 LOOP LDA 10,X get char at index position in string
0018 000B F006 BEQ DONE if character is O, return
0019 000D 200080 JSR CcouT print char in accum
0020 0010 E8 INX point to next char
0021 0011 80F5 BRA LOOP loop thru string
0022 0013
0023 0013 ; push pointer to zero-terminator as return addr (RETURN-1)
0024 0013
0025 0013 DA DONE PHX
0026 0014 60 RTS return to label RETURN
0027 0015 END
0028 0000
0029 0000
0030 0000 ; CcouT
0031 0000 ; machine-dependent routine to output a character
0032 0000 ;
0033 0000 CcouT START
0034 0000 ECOUT GEQU $FDED  Apple//COUT
0035 000 48 PHA Saveregisters
0036 0001 DA PHX
0037 0002 5A PHY
0038 0003 08 PHP and status,
0039 0004 38 SEC switch to emulation
0040 0005 FB XCE
0041 0006 20EDFD JSR ECOUT  call 6502 routine
0042 0009 18 CLC
0043 000A FB XCE restore native mode
0044  000B 28 PLP restore status
0045 000C 7A PLY restore registers
0046 000D FA PLX return
0047  00CE 68 PLA
0048 000F 60 RTS
0049 0010 END
Listing 12.5

The parameter address on the stack need only be pulled and incremented once, and the data can then be
accessed in the same manner as in the foregoing example. Since the loop terminates when the zero end-of-
string marker is reached, pushing its address in the X register onto the stack gives RTS a correct return, value —
RETURN-1 — the byte before the location where execution should resume. Note that the data bank is assumed
to equal the program bank.

The advantage of this method is in bytes used: there is no need for any explicit parameter-passing by
the calling code, and the JSR mechanism makes the required information available to the subroutine
automatically. In fact, for most applications on all four 65x microprocessors, this method uses fewer bytes for
passing a single parameter than any other.

One dlight disadvantage of this method is that if the string is to be output more than once, it and its
preceding JSR must be made into a subroutine that is called to output the string.
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A second disadvantage to this method comes in calling routines to which more than one parameter must
be passed. This last example demonstrated how a parameter (the address of the string) can be implicitly passed
on the stack. But there is no way to extend the principle so two parameters could be implicitly passed, for
instance, to a routine that compares two strings. On the other hand, parameter can also be explicitly passed on
the stack. The push effective address instructions and stack-relative addressing modes make this all the easier,
as Fragment 12.6 and Listing 12.6 show.

0000 F40080 PEA STRING1 push address of STRING1 onto stack
0003 F40080 PEA STRING2 push address of STRING2 onto stack
0006 200080 JSR COMPARE compare the two

0009 . return and continue processing

0009

0009

Fragment 12.6

0001 0000 KEEP KL.12.6

0002 0000 65816 ON

0003 0000

0004 0000 ; compare two strings of characters, each terminated by a 0 byte

0005 0000 ; on entry: locs of strings are stacked just below the return addr

0006 0000 ; on exit : carry clear if chars match up to len of shortest string

0007 0000 ; else carry set for no match

0008 0000

0009 0000 COMPARE START

0010 0000

0011 0000 08 PHP assume native mode; save status
0012 0001

0013 0001 C210 REP #$10

0014 0003 LONGI ON

0015 0003 SEP #$20

0016 0005 LONGA OFF

0017 0005

0018 0005  A00000 LDY #0

0019 0008 B303 LOOP LDA 3.9.,Y get character from first string
0020 0O00A F007 BEQ PASS if zero, end of string: match
0021 000C D305 CMP 5,9,Y compare to corresponding char in 2™ string
0022 O000E D006 BNE FAIL branch if not equal; probably failure
0023 0010 C8 INY €lse do next pair

0024 0011 80F5 BRA LOOP

0025 0013

0026 0013

0027 0013 ; matches shortest string: ok

0028 0013

0029 0013 28 PASS PLP restore previous status

0030 0014 18 CLC but clear carry

0031 0015 60 RTS

0032 0016 B305

0033 0016 FOF9 FAIL LDA 5,9,Y was last failure due to end of string2?
0034 0018 FOF9 BEQ PASS yes; let it pass

0035 001A

0036 001A 28 PLP restore previous status

0037 001B 38 SEC sorry, no good

0038 001C 60 RTS

0039 001D

0040 001D END

Listing 12.6
This example, which compares two strings to see if they are equal up to the length of the shorter of the
two strings, uses parameters that have been explicitly passed on the stack. This approach, since it explicitly
passes the address of the strings, lets them be located anywhere and referred to any number of times. Its

187



The Western Design Center

problem is that when the subroutine returns, the parameters are left on the stack. Clearly, the subroutine should
clean up the stack before returning; however, it can't simply pull the parameters off, because the return address
is ditting on top of the stack (which explains why stack offsets of three and five, rather than one and three, are
used).

Perhaps the cleanest way to pass parameters on the stack prior to a subroutine call is to decompose the
JSR ingtruction into two: one to push the return address, the other to transfer to the subroutine. The push
effective address instructions again come in handy. Fragment 12.7 shows how the parameters to the routine in
Listing 12.7 are passed.

0000

0000 .

0000 F4FF7F PEA RETURN-1  push return addr before parameters
0003  F40080 PEA STRING1 push address of STRINGL1 onto stack
0006  F40080 PEA STRING2 push address of STRING2 onto stack
0009  4C0080 JMP COMPARE comparethem

000C RETURN . continue processing

000C .

000C

000C

Fragment 12.7
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0001 0000 KEEP KL.12.7
0002 0000 65816 ON
0003 0000
0004 0000 ; compare two strings of characters, each terminated by a 0 byte
0005 0000 ; onentry: locs of strings are at top of stack
0006 0000 ; return address is stacked just beneath
0007 0000 ; onexit: carry clear if chars match up to len of shortest string
0008 0000 ; else carry set for no match
0009 0000
0010 0000 COMPARE  START
0011 0000
0012 0000 08 PHP assume native mode; save status
0013 0000
0014 0001 C210 REP #$10
0015 0003 LONGI ON
0016 0003
0017 0003 E220 SEP #$20
0018 0005 LONGA OFF
0019 0005
0020 0005  A00000 LDY #0
0021 0008 B301 LOOP LDA (1,9),Y  get character from first string
0022 000A FOO7 BEQ PASS if zero, end of string: match
0023 000C D303 CMP (3,9),Y  compareto corresponding char in 2" string
0024 O0CE D007 BNE FAIL braif not equal; probably failure
0025 0010 C8 INY else do next pair
0026 0011 80F5 BRA LOOP
0027 0013
0028 0013 ; matches shortest string
0029 0013
0030 0013 28 PASS PLP they match up to shortest string;
0031 0014 18 CLC restore status, but clear carry
0032 0015 8006 BRA EXIT
0033 0017
0034 0017 B303 FAIL LDA (39),Y waslast falure dueto end of string2?
0035 0019 FOF8 BEQ PASS yes, let it pass
0036 001B 28 PLP restore status, but set carry (no match)
0037 001C 38 SEC
0038 001D
0039 001D FA EXIT PLX clean up stack: remove both 16-bit params
0040 O001E FA PLX
0041 O001F 60 RTS now return
0042 0020
0043 0020 END
Listing 12.7

Since the return address was pushed first, the parameter addresses on the stack are accessed via offsets
of one and three. Before returning, two pull instructions pop the parameters off the stack, then the RTS is
executed, which returns control to the main program with the stack in order.

Passing parameters on the stack is particularly well suited for both recursive routines (routines
that call themselves) and reentrant routines (routines that can be interrupted and used successfully both
by the interrupting code and the original call) because new memory is automatically allocated for
parameters for each invocation of the subroutine. Thisis the method generally used by most high-
level languages that support recursion.

Fragment 12.8 sets up multiple parameters implicitly passed on the stack by coding after the JSR, not
data, but pointersto data. Theroutine calledisin Listing 12.8.
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0000
0000
0000
0003
0005
0007
0007
0007
0007

200080
0080
0080

RETURN

JSR
DC
DC

COMPARE
A 'STRINGY
A 'STRINGZ

compare two strings; addresses follow
address of STRING1

address of STRING2

continue processing

Fragment 12.8

While this subroutine, unlike the previous one, uses a dozen bytes just getting itself ready to start, each

call requires only seven bytes (three for the JSR, and two each for the parameters), while each call to the

previous routine required twelve bytes (three PERs at three bytes each plus three for the IMP).
Apple Computer’'s ProDOS operating system takes this method a step further: all operating system

routines are called via a JSR to a single ProDOS entry point. One of the parameters that follow the JSR
specifies the routine to be called, the second parameter specifies the address of the routine's parameter block.
This method allows the entry points of the internal ProDOS routines to “float” from one version of ProDOS to
the next; user programs don’t need to know where any given routine is located.
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0001 0000 KEEP KL.12.8
0002 0000 65816 ON
0003 0000
0004 0000 ; compare two strings of characters, each terminated by a 0 byte
0005 0000 ; on entry: increment address at top of stack: pts to loc of 1% str
0006 0000 ; incr twice more to point to loc of 2™ str
0007 0000
0008 0000 COMPARE START
0009 0000
0010 0000 C210 REP #$10 caller must save and
0011 0002 LONGI ON restore mode status
0012 0002
0013 0002 E220 SEP #$20
0014 0004 LONGA OFF
0015 0004
0016 0004 A PLY
0017 0005 c8 INY points to indirect address of 1% str
0018 0006 B90000 LDA 10,Y load accum with address of 1% string
0019 0009 C8 INY
0020 000A c8 INY point Y to indirect addr of 2" string
0021 000B BEOOOO LDX 10,Y load X with address of 2™ string
0022 0OO0OE C8 INY point Y to RETURN-1 for RTS
0023 000F 5A PHY and push it onto stack for RTS
0024 0010 A8 TAY load Y with address of 1% string
0025 0011
0026 0011 B90000  LOOP LDA 10,Y get character from first string
0027 0014 FO09 BEQ PASS if zero, end of string: match
0028 0016 DDO0000 CMP 10,X compare to corresponding char in 2™ string
0029 0019 D006 BNE FAIL braif not equal; probably failure
0030 001B c8 INY else do next pair
0031 001C ES8 INX
0032 001D  80F2 BRA LOOP
0033 001F 18 PASS CLC they match up to shortest string;
0034 0020 60 RTS
0035 0021 BD0000  FAIL LDA 10,X was last failure due to end of string2?
0036 0024 FOF9 BEQ PASS yes; let it pass
0037 0026 38 SEC sorry, no good
0038 0027 60 EXIT RTS now return!
0039 0028
0040 0028 END
Listing 12.8
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13) Chapter Thirteen

Interrupts and System Control Instructions

This is the last chapter that introduces new instructions; amost the entire 65816 instruction set, and all
of the addressing modes, have been presented. The only instructions remaining are the interrupts and status
register control instructions, listed in Table 13.1. This chapter introduces interrupt processing, as well.

Most of the system control functions described are of practical interest only if you are implementing
systems programs for the 65x processors, such as operating systems or device handling routines. It is quite
possible that if you are programming on an existing machine, with full operating system support, you will have
little cause to use many of the system control instructions.

Available on:

Mnemonic 6502 65C02 65802/816 Description
BRK X X X Break (software interrupt)
RTI X X X Return from Interrupt
NOP X X X No operation
SEC X X X Set carry flag
CLC X X X Clear carry flag
SED X X X Set decimal mode
CLD X X X Clear decimal mode
SEI X X X Set interrupt disable flag
CLI X X X Clear interrupt disable flag
CLV X X X Clear overflow flag
SEP X Set status register bits
REP X Clear status register bits
CcoP X Co-processor or software

interrupt
STP X Stop the clock
WAI X Wait for interrupt
WDM X Reserved for expansion
Table13-1. Interrupt and System Control Instructions.
Interrupts

Aninterrupt, asthe name implies, is a disruption of the normal sequential flow of control, as modified
by the flow-altering statements such as branches and jump instructions encountered in the stream of code.

Hardware interrupts are generated when an external device causes one of the interrupt pins, usually
the IRQ’ or interrupt request pin, to be eectricaly pulled low from its normally high signal level. The typical
application of 65x interrupts is the implementation of an interrupt-driven I/O system, where input-output
devices are allowed to operate asynchronously from the processor. This type of system is generally considered
to be superior to the aternative type of 1/0 management system, where devices are polled at regular intervals to
determine whether or not they are ready to send or receive data; in an interrupt-driven system, 1/O service only
claims processor time when an 1/O operation is ready for service. Figure 13.1 illustrates how processor time is
spent under either system.
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/0 Requested at Times A and B
Figure 13-1 1/O Management: Interruptsvs. Polling

Softwar e interrupts are specia instructions that trigger the same type of system behavior as occurs
during a hardware interrupt.

When an interrupt signal is received, the processor |oads the program counter with the address stored in
one of the sixteen-bit interrupt vectors in page $FF of bank zero memory, jumping to the (bank zero) routine
whose address is stored there. (In the case of the 6502, 65C02, and 65802, “bank zero” refers to the lone 64K
bank memory addressable by these processors.) The routine that it finds there must determine the nature of the
interrupt and handle it accordingly.

When an interrupt is first received, the processor finishes the currently executing instruction and pushes
the double-byte program counter (which now points to the instruction following the one being executed when
the interrupt was received) and the status flag byte onto the stack. Since the 6502 and 65C02 have only a
sixteen-bit program counter, only a sixteen-bit program counter address is pushed onto the stack; naturaly, this
is the way the 65802 and 65816 behave when in emulation mode as well. The native-mode 65802 and 65816
must (and do) also push the program counter bank register, since it is changed to zero when control is
transferred through the bank zero interrupt vectors.

As Figure 13.2 shows, in native mode the program bank is pushed onto the stack first, before the
program counter and the status register: but emulation mode it is lost. This means that if a 65816 program is
running in emulation mode in a bank other than zero when an interrupt occurs, there will be no way of knowing
where to return to after the interrupt is processed because the original bank will have been lost.
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This unavoidable but fairly esoteric problem can be dealt with in two ways. The first is simply never
run in emulation mode outside bank zero. The second solution, which is to store the value of the program
counter bank register in a known location before entering the emulation mode with a non-zero program counter
bank register, is described later in this chapter.

In addition to pushing the status and program counter information onto the stack, the d decimal flag in
the status register is cleared (except on the 6502), returning arithmetic to binary mode. The i interrupt disable
flag is set, preventing further interrupts until your interrupt-service routine resets it (it may do this as soon as it
is finished saving the previous context) or the routine is exited (with an RTI return-from-interrupt instruction).
Indeed, if the interrupt flag had already been set, the first interrupt would have been ignored as well.

This last feature of disabling interrupts, however, does not apply to a second type of hardware interrupt,
called the non-maskable interrupt (or NM1’) for the very reason that it cannot be ignored, even if thei flag is
set. NMI’ istriggered by a separate pin on a 65x processor; its use is usually reserved for a single high priority
interrupt, such as power failure detection.

6502/65C02/Emulation Mode
Stack
before -
—> PC High
| Stack | Pointer (S) PC Low —| Program | Counter (PC) |
after Status (P)
v —> [ | Status (P) |
Bank O
65802/65816 Native M ode
before Stack
——»| Program Bank (PBR) ||4— [ Program Bank (PBR) |
PC High ‘
| Stack | Pointer (S| BC Low <—| | Program | Counter (PC) |
e Staius (P) e[ Saus@ ]
v — P
Bank O

Figure 13-2 Interrupt Processing

Just as the two types of interrupt have their own signals and pins, they aso have their own vectors —
locations where the address of the interrupt-handling routine is stored. As Table 13.2 shows, on the 65802 and
65816 there are two sets of interrupt vectors. one set for when the processor is in emulation mode, and one set
for when the processor is in native mode. Needless to say, the locations of the emulation mode vectors are
identical to the locations of the 6502 and 65C02 vectors.
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Emulation mode, e= 1 Native mode, e=0
OOFFFE,FF - IRQ/BRK OOFFEEEF - IRQ
OOFFFC,FD - RESET -

OOFFFA,FB - NMI OOFFEALEB - NMI

OOFFF8,F9 - ABORT OOFFE8E9 - ABORT
OOFFE6E7 - BRK

OOFFF4,F5 - COP OOFFE4E5 - COP

Table 13-2 Interrupt Vectors

As you can see in Table 13.2, there are severa other vector locations named in addition to IRQ’ and
NMI’. Note that there is no native mode RESET’ vector: RESET’ aways forces the processor to emulation
mode. Also note that the IRQ’ vector among the 6502 vectors is listed as IRQ’/BRK, while in the
65802/65816 native mode list, each has a separate vector.

The BRK and COP vectors are for handling software interrupts. A software interrupt is an
instruction that imitates the behavior of a hardware interrupt by stacking the program counter and the status
register, and then branching through a vector location. On the 6502 and 65C02, the location jumped to in
response to the execution of a BRK (a software interrupt) and the location to which control is transferred after
an IRQ’ (a hardware interrupt) is the same; the interrupt routine itself must determine the source of the interrupt
(that is, either software or hardware) by checking the value of bit five of the processor status register pushed
onto the stack. On the 6502 and 65C02 (and the 6502 emulation mode of the 65802 and 65816), bit fiveisthe b
break flag. Note first that this is not true of the 65816 native mode, since bit five of its status register is the m
memory select flag. Secondly, notice that it is the stacked status byte which must be checked, not the current
status byte.

Suppose, for example, that the IRQ'/BRK vector at $00:FFFE.FF contains the address $8100
(naturally, in the low-high order all 65x addresses are stored in), and the code in Fragment 13.1 is stored starting
at $8100. When a BRK instruction is executed, this routine distinguishes it from a hardware interrupt and
handles each uniquely.

0000 ORG $B100

0000

0000 IRQBRKIN START

0000 8D1000 STA SAVEA save original accumulator
0003 68 PLA copy p register

0004 48 PHA return it to stack

0005 2920 AND #%00010000 look at bit four only
0007 DOF7 BNE ISBRK braif bit 4 set:

0009 ; BRK caused interrupt
0009 . else caused by IRQ"
0009

0009

0009 .

0009 4C0C00 MP RETURN reload accum and return
000C

000C ; handle interrupt caused by BRK instruction

000C

000C ISBRK . do BRK handling code
000C .

000C .

000C AD1000 RETURN LDA SAVEA reload saved accumulator
000F 40 RTI return

0010

0010 00 SAVEA DS 1

0011

0011 END

Fragment 13.1
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The RTI, or return-from-interrupt instruction is similar to the RTS (return-from-subroutine) instruction. RTI
returns control to the location following the instruction that was interrupted by pulling the return address off the stack.
Unlike the RT Sinstruction, however, since the status register was also pushed onto the stack in response to the interrupt, it
too is restored, returning the system to its prior state. Further, in the 65802/65816 native mode the RT1 instruction behaves
like an RTL (return from subroutine long), in that the program counter bank register is aso pulled off the stack. This
difference makes it critical that the processor always be in the same state when the RTI instruction is executed as it was
when it was interrupted. The fact that the 65816 has separate vector groups for native and emulation modes makes this
easier to achieve.

There is another key difference between the RTI and the RTS or RTL: RTS and RTL increment the
return address after pulling it off the stack and before loading it into the program counter; RTI on the other
hand loads the program counter with the stack return address unchanged.

RTI will probably not function correctly in the special case where an interrupt occurred while code was
executing in the emulation mode in a non-zero bank: RTI will try to return control to an address within the bank
the RTI is executed in, which will probably not be the correct bank because (as on the 6502 and 65C02) the
bank address is not stacked. As mentioned earlier, the only way to dea with this is to save the bank address
prior to entering emulation mode. When the interrupt handler returns, it should use this saved bank address to
execute along jump to an RTI instruction stored somewhere within the return bank, the long jump will present
the program bank address to the correct value before the RTI is executed.

The interrupt handler itself should enter the native mode if interrupts are to be reenabled before exiting
in order to avoid the same problem, the return to emulation mode before exiting via the long jump to the RTI
instruction.

Concerning the BRK instruction, you should also note that although its second byte is basically a“don’t
care” byte—that is, it can have any value - the BRK (and COP instruction as well) is a two-byte instruction, the
second byte sometimes is used as a signatur e byte to determine the nature of the BRK being executed. When
an RTI instruction is executed, control always returns to the second byte past the BRK opcode. Figure 13.3
illustrates a stream of instructions in hexadecimal form, the BRK instruction, its signature byte, and location an
RTI returnsto. The BRK instruction has been inserted in the middle; after the BRK is processed by a routine
(such as the skeleton of a routine described above), control will return to the BCC instruction, which is the
second byte past the BRK opcode.

The fact that the opcode for the BRK instruction is 00 is directly related to one of its uses. patching
existing programs. Patching is the process of inserting instruction data in the middle of an existing program in
memory to modify (usually to correct) the program without reassembling it. Thisis a favored method of some
programmers in debugging and testing assembly language programs, and is quite simple if you have a good
machine-level monitor program that allows easy examination and modification of memory locations. However,
if the program to be patched is stored in PROM (programmable read-only memory), the only way to modify a
program that has aready been “burned-in” is to change any remaining one bits to zeros. Once a PROM bit has
been “blown” to zero, it cannot be restored to a one. The only way to modify the flow of control is to insert
BRK instructions — all zeroes — at the patch location and to have the BRK handling routine take control from
there.
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LDA $44

L

A5 44

00 00 90 32

BRK instruction

BCC instruction
optional
‘signature byte’

control resumes here
after RTI executed

Figure 13-3Break Signature Byte Illustration

Processing I nterrupts

Before an interrupt handling routine can perform a useful task, it must first know what is expected of it.
The example of distinguishing a BRK from an IRQ isjust a special case of the genera problem of identifying
the source of an interrupt. The fact that different vectors exist for different types of interrupts — for example,
NMI would usually be reserved for some catastrophic type of interrupt, like “power failure imminent”, which
demanded immediate response — solves the problem somewhat. Typically, however, in an interrupt-driven
system there will be multiple sources of interrupts through a single vector. The 65802 and 65816, when in
native mode, eliminate the need for a routine to distinguish between IRQ and BRK, such as the one above, by
providing a separate BRK vector, as indicated in Table 13.2. Although this does simplify interrupt processing
somewhat, it was done primarily to free up bit five in the status register to serve as the native memory select
flag, which determines the size of the accumulator.

The interrupt source is generaly determined by a software technique caled polling: when an interrupt
occurs, al of the devices that are known to be possible sources of interrupts are checked for an indication that
they were the source of the interrupt. (1/O devices typicaly have a status bit for this purpose.) A hardware
solution also exists, which is to externally modify the value that is apparently contained in the vector location
depending on he source of interrupt. The 65816 aids the implementation of such systems by providing a
VECTOR PULL signal, which is asserted whenever the interrupt vector memory locations are being accessed
in response to an interrupt.

A simple example of the polling method could be found in a system that includes the 6522 Versatile
Interface Adapter as one of its I/O controllers. The 6522 is a peripheral control 1C designed for hardware
compatibility with the 65x processor family. The 6522 includes two parallel 1/O ports and two timer/counters.
It can be programmed to generate interrupts in response to events such as hardware handshaking signals,
indicating that data has been read or written to its I/O ports, or to respond to one of its countdown timers
reaching zero. The 6522 contains sixteen different control and 1/0 registers, each of which is typically mapped
to an adjacent address in the 65x memory space. When an interrupt occurs, the processor must poll the
interrupt flag register, shown in Figure 13.4, to determine the cause of the interrupt.
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——CA2—

—— CAl———

—— SHIFT REG
CB2

— CB1
— TIMER2

—TIMER1

SET BY CLEARED BY
CA2 active edge Read or write
Reg. 1(ORA)
CA1 active edge Read or write
Reg. 1(ORA)
Complete 8 shifts Read or write
Shift Reg.
CB2 active edge Read or write ORB
CB1 active edge Read or write ORB
Time-out of T2 Read T2 low or write
T2 high
Time-out of T-1 Read T1 low or write
T1 high

—IRQ

Any enabled
interrupt

Clear dl interrupts

Figure 13-4 6522 VIA Interrupt Flag Register

If register zero of the 6522 is mapped to location $FF:B0O80 of a 65816 system, for example, the
interrupt flag register would normally be found at $FF:B08D. The polling routine in Fragment 13.2 would be
needed whenever an interrupt occurred. To keep the example simple, assume that only the two timer interrupts
are enabled (for example, timer 1 to indicate, in a multi-tasking system, that a given process time-slice has

expired and the next process must be activated; timer 2, on the other hand, to maintain a time-of-day clock).
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0000 IRQIN START

0000 E220 SEP #$20 8-hit accumulator
0002 LONGA OFF

0002

0002 8D1B0OO STA SAVEA save the accumul ator
0005 AF8DBOFF LDA $FFBO8D deviceinterrupt register
0009  10F5 BPL NEXTDEV  branchif bit 7 clear
000B OA ASL A check hits6 & 5

000C OA ASL A bit 6 to carry, 5to sign
000D  30F1 BMI TIMER2 if 5 set, timer2 caused
O00F ; interrupt

000F

000F ; timer2 didn’t cause interrupt; timer1?

000F

O0OF  90EF BCC ERROR interrupt source unknown
0011

0011 ; bit 6 set: timerl caused interrupt

0011

0011 TIMER1 . timer 1 handler code
0011

0011

0011

0011 8004 BRA RETURN

0013

0013 ; bit 5 set: timer2 caused interrupt

0013

0013 TIMER2 . timer 2 handler code
0013

0013 .

0013 8002 BRA RETURN

0015

0015 ; interrupt not caused by 6522: check other devices

0015

0015 NEXTDEV . codeto poll next devices
0015

0015 .

0015 8000 BRA RETURN

0017

0017 ERROR . error handling code
0017

0017

0017

0017 AD1BOO RETURN LDA SAVEA reload saved accumulator
001A 40 RTI and return

001B

001B 00 SAVEA DS 1

001C END

Fragment 13.2

When the interrupt flag register is loaded into the accumulator, the first thing to check is whether or not
bit seven is set; bit seven is set if any 6522 interrupt is enabled. If it is clear, then the interrupt handler branches
to the location NEXTDEV, which polls al other connected I/O devices looking for the interrupt.

If the 6522 was the source of the interrupt, then two shifts move the flag register’s bit six into the carry
and bit five into bit seven of the accumulator. Since bit five is set by the time-out of timer 2, if the high-order
bit of the accumulator is set (minus), then the source of the interrupt must be timer 2. If timer 2 did not cause
the interrupt, then the carry flag is checked; if it's set, then timer 1 caused the interrupt; if it’s clear, then timer 1
didn’t cause it either, so there has been some kind of error.
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Control is thus assigned to the correct routine to handle the specific source of interrupt.

It is important to note that in both examples in this chapter, the accumulator was saved in memory prior
to its use within the interrupt-handling routine. Y ou should further note that in the second example, which is
specific to the 65816, only the low-order byte of the accumulator was stored, because the STA SAVEA
instruction was executed after the SEP #$20 instruction, which set the accumulator size to eight bits. When the
RTI instruction is executed at the end of the interrupt service routine, the m status flag will be restored to
whatever value it had prior to the interrupt. 1f m was clear and the accumulator was in sixteen-bit mode, the
high-order byte will have been preserved throughout the interrupt routine provided that none of the interrupt
handling routines switch into sixteen-bit mode; if they do, the high-order part of the accumulator must be saved
first, then restored before execution of the RTI.

An important concept related to interrupt handling is that of reentrancy; a reentrant program can be
interrupted and literally reentered by the interrupt handling routine and return correct vaues for both the
origina invocation and the reentrant call from the interrupt handler. Reentrancy is normally achieved by using
no addressable memory — only registers, which may be saved and restored on the stack each time the routine is
entered. The stack relative addressing modes simplify the writing of reentrant routines considerably.

I nterrupt Response Time

By saving only the essentials — the program counter, program counter bank in 65802/65816 native
mode, and status register — and shifting the burden of saving and restoring user registers (those that are actually
used) to the programmer of the interrupt-handler, the 65x processors provide maximum flexibility and
efficiency. It is quite possible for an interrupt routine to do useful work — such as checking the status of
something within the system at periodic intervals — without using any registers.

At ether seven or eight cycles per interrupt — the time required to stack the program counter, pc bank,
and status register, and then jump through the interrupt vectors — the interrupt response cycle is among the
longest-executing 65x instructions. Since an interrupt aways lets the current instruction complete execution,
there is a possible seven-cycle delay between the receipt of an interrupt and the servicing of one; this delay is
caled the interrupt latency. Small asthe delay is, it can be significant in the servicing of data acquisition and
control devices operating in real time, systems in which it is important that interrupts be disabled as little as
possible.

It has been the goal of the designers of the 65x series to keep interrupt latency to a minimum. To
further reduce interrupt latency, the 65802 and 65816 introduced a special new instruction, the WAI or wait for
interrupt instruction. In an environment where the processor can be dedicated to serving interrupts — that is,
where the interrupts provide timing or synchronization information, rather than being used to allow
asynchronous 1/O operations to be performed — the processor can be put into a specia state where it sits and
walits for an interrupt to happen. This lets any of the user registers be saved before the interrupt occurs, and
eliminates the latency required to complete an existing instruction. Upon execution of a WAI instruction, the
processor goes into a very low-power state, signals the outside world that it is waiting by pulling the bi-
directional RDY signal low, and sitsidle until an interrupt is received. When that occurs, response is immediate
since no cycles are wasted completing an executing instruction.

There are two responses to an interrupt after the WAI instruction is executed. The first, as you might
expect, is to release the waiting condition and transfer control to the appropriate interrupt vector, as normally
takes place whenever interrupts are serviced. The second response is if maskable interrupts (on the IRQ’ line)
have been disabled, in which case the normal interrupt processing does not occur. However, since the waiting
condition is released, execution continues with the instruction following the WAI opcode. This means that
specialized interrupt-synchronization routines can be coded with a one-cycle latency between receipt of
interrupt and response.

A second, similar 65802/65816 instruction is the STP or stop the clock instruction. The STP
instruction reduces on-chip power consumption to a very low level by stopping the phase two clock input.
Since power consumption of CMOS circuits increases with operating frequency, by halting the clock input the
STP instruction is able to reduce the power consumption of the 65816 to its lowest possible value. Like the
WAI instruction, the STP idles the processor after being executed. Further, the processor I/O buffers are
disabled, making the bus available. The processor is powered back up in response to a RESET’ signal being
asserted.
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The RESET’ pin is an input similar to the IRQ’ and NMI’ inputs. It is used to perform system
initialization or reinitialization. When a 65x system is first powered up, RESET’ must be asserted by externd
power-up circuitry. It can also be used to let the user force the system into a known state, for example, to break
out of an infinite loop.

When RESET’ is asserted, the processor is forced to emulation mode and the registers and status flags
are initialized as shown in Table 13.3. Note that the initiaization of the index register high bytes to zero is
really afunction of x being forced to one; x = 1 always clears the high byte of the index registers.

Stack High 01

Direct Page Register 0000

X Register High 00

Y Register High 00

Program Bank Register 00

Data Bank Register 00

Status Register m=1,x=1,d=0,i=1
Emulation Flag 1

Table 13-3 Reset Initialization

In addition to the BRK, IRQ’, RESET’, and NMI’ vectors discussed, there are two remaining
interrupt-like vectors. These are the COP (co-processor) and ABORT’ vectors. The COP vector is essentialy
a second software interrupt, similar to BRK, with its own vector. Although it can be used in a manner similar
to BRK, it isintended particularly for use with co-processors, such as floating-point processors. Like BRK, it
is atwo-byte instruction with the second available as a signature byte.

The ABORT’ vector contains the address of the routine which gains control when the 65816 ABORT’
signal isasserted. Prior to transferring control through the ABORT’ vector, the current instruction is completed
but no registers are modified. The pc bank, program counter, and status register are pushed onto the stack in the
same manner as an interrupt. The ABORT’ signal itself is only available on the 65816; although the 65802 has
an ABORT’ vector, it is ineffective since no ABORT’ signal can be generated because of the need for the
65802 to be pin-compatible with the 6502. Typical application of the abort instruction feature is the
implementation of hardware memory-management schemes in more sophisticated 65816 systems. When a
memory-bounds violation of some kind is detected by external logic, the ABORT"’ signal is asserted, letting the
operating system attempt to correct the memory-management anomaly before resuming execution.

Status Register Control Instruction

There are nine instructions that directly modify the flags of the status register; two of them are available
only on the 65802 and 65816. These last two are the SEP (set the P status register) and REP (reset P)
instructions, which you are aready familiar with from their use in the example to set or reset the m and x flags
in the status register. They can be used to set or clear any of the flags in the status register. For each bit in the
immediate byte that follows the opcode, the corresponding bit in the status register is set or cleared (depending
on whether SEP or REP, respectively, was used).

The other seven flag instructions set or clear individual flags in the status register. The pair SEC and
CLC set and clear the carry flag when executed. These should be familiar to you from the chapter on
arithmetic, where the CL C is always used before the first of a series of ADC instructions, and SEC before the
first of aseries of SBC instructions. Likewise, the SED and CL D modes should also be familiar from the same
chapter’s discussion of decimal-mode arithmetic; these two instructions set or clear the decima mode. Note
that reset can also affect the decima flag: it is always initialized to zero on reset on the 65C02, 65802, and
65816; on the other hand, its value is indeterminate after reset on the 6502.

The SEI (set interrupt disable flag) and CL1 (clear interrupt disable flag) instructions are new to this
chapter: they are used to enable or disable the processor’s response to interrupt requests viathe IRQ’ signal. If
the SEI instruction has been executed, interrupts are disabled; a CLI interrupt instruction may be used to
reenable interrupts. Note that the interrupt disable flag is set automatically in response to an interrupt request,
whether a software interrupt or IRQ’, NMI’", or RESET’; this “locks out” other interrupts from occurring until
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the current one has been serviced. Similarly, the interrupt disable flag is cleared automatically upon return from
an interrupt viaRTI dueto reloading of the stacked status register, which was pushed with i clear.

The SEI lets interrupts be locked out during critical routines which should not be interrupted. An
example would be a device controller that depended on software timing loops for correct operation; interrupts
must be locked out for the duration of the timing loop. It isimportant in an environment where interrupts are
supported that they not be locked out for long periods of time. Although the CL1 instruction will explicitly
clear the interrupt disable flag, it is rarely used because typically the processor status is saved before execution
of an SEI instruction as in Fragment 13.3, which reclears the flag by restoring the entire processor status
register.

0000 08 PHP save status

0001 78 SEI disable interrupts

0002 .

0002 . execute time-critical code

0002 .

0002 28 PLP done — restore status, enable interrupts

Fragment 13.3

Since the interrupt disable flag was clear when the PHP instruction was executed, the PL P instruction restores
the cleared flag. This same technique is also useful when mixing subroutine calls to routine with different
default modes for accumulator and index register sizes; since saving the status with PHP is a common operation
between subroutine calls anyway, the PL P instruction can be used to conveniently restore operating modes as
well as status flags.

Finally, there isa CLV (clear overflow flag). There is no corresponding set overflow instruction, and,
as you will recall from the chapter on arithmetic, the overflow flag does not need to be explicitly cleared before
a signed operation. The arithmetic operation aways change the overflow status to correctly reflect the result.
The reason for including an explicit CLV instruction in the 65x repertoire is that the 6502, 65C02, and 65802
have a SET OVERFLOW input signal; external hardware logic can set the overflow flag of the status register
by pulling the SET OVERFLOW input low. Since there is no corresponding clear overflow input signal, the
overflow must be cleared in software in order to regain susceptibility to the SET OVERFLOW signal.

The practical application of the SET OVERFLOW signal is generally limited to dedicated control
applications; it is rarely connected on general-purpose, 6502-based computer systems. On the 65816, there is
no SET OVERFLOW input; it was sacrificed to make room for some of the more generally useful new signals
available on the 65816 pin configuration.

No Operation Instructions

The final two instructions to complete the 65816 instruction set are the no operation instruction. These
do exactly what they sound like: nothing. They are used as place holders, or time-wasters; often they are used
to patch out code during debugging. The NOP instruction — with a hexadecimal value of $EA — is the standard
no operation.

As mentioned in the earlier architecture chapters, the 6502 and 65C02 have a number of unimplemented
instructions — the same opcodes which, on the 65802 and 65816, correspond to the new instructions. On the
6502, the operation of the processor when these “instructions’ are executed is undefined; some of them cause
the processor to “hang-up.” On the 65C02, these are all “well-behaved” no-operations of either one, two, or
more cycles. On the 65802 and 65816, there is only one unimplemented instruction, defined as WDM; thisis
reserved for future systems as an escape prefix to expand the instruction set with sixteen-bit opcodes. For this
reason, it should not be used in your current programs, as it will tend to make them incompatible with future
generations of the 65816.
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14) Chapter Fourteen

Selected Code Samples

This chapter contains five different types of example programs, which are examined in detail. Each
focuses on a different topic of interest to the 65x programmer: multiplication and division algorithms; a 65802-
to-6502 mode-switching tour de force; a quick utility routine to determine which 65x processor a program is
running under; high-level languages; and a popular performance benchmark.

Multiplication

Probably the most common multiply routine written for eight-bit applications is to multiply one sixteen-
bit number by another, returning a sixteen-bit result. While multiplying two large sixteen-bit numbers would
yield a 32-bit result, much of systems programming is done with positive integers limited to sixteen bits, which
iswhy this multiply example is so common. Be aware that aresult over sixteen bits cannot be generated by the
examples as coded — you'll have to extend them if you need to handle larger numbers.

There are several methods for the sixteen-by-sixteen multiply, but al are based on the multiplication
principles for multi-digit numbers you were taught in grade school: multiply the top number by the right-most
digit of the bottom number; move left, digit by digit, through the bottom number, multiplying it by the top
number, each time shifting the result product left one more space and adding it to the sum of the previous
products:

2344
X 12211

2344

2344
4688
4688

2344
28622584

Or to better match the description:

2344
X 12211
2344
+ 2344
25784 sum of products so far
+ _4688
494584 sum of products so far
+ _4688
5182584 sum of products so far
+ 2344
28622584 final product (sum of all single-digit multiplies)
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Binary multiplication is no different, except that, since each single-digit multiply is by zero or one, each
resulting single-digit product is either the top number itself or al zeroes.

101

x 1010
000 5
101 x_10
000 0
101
110010 50 decimd

3

To have the computer do it, you have it shift the bottom operand right; if it shifts out a zero, you need
do nothing, but if it shifts out a one, you add the top number to the partial product (which isinitialized at zero).
Then you shift the top number left for the possible add during the next time through this loop. When there are
no more ones in the bottom number, you are done.

6502 Multiplication

With only three eight-bit registers, you can't pass two sixteen-bit operands to your multiply routine in
registers. One solution, the one used below, is to pass one operand in two direct page (zero page) bytes, while
passing the other in two more; the result is returned in two of the 6502's registers. All this is carefully
documented in the header of the routinein Listing 14.1.

This 6502 multiply routine takes 33 bytes.

65C02 Multiplication

With the same three eight-bit registers as the 6502, and an instruction set only somewhat enhanced, the
65C02 multiply routine is virtually the same as the 6502s. Only one byte can be saved by the substitution of an
unconditional branch instruction for the jump instruction, for atotal byte count of 32.

65802 and 65816 Multiplication

The 65802 and 65816, when running in native mode, have three registers, all of which can be set to
sixteen bits, in addition to having many more addressing modes. As you might expect, a multiply routine for
these processors is considerably shorter than the 6502 and 65C02. What you might not expect is how much
shorter: the multiply routine in Listing 14.2 for the 65802 ands 65816 takes only 19 bytes — its length is less
than 60 percent of each of the other two routines!

Notice the additional documentation at the beginning of the routine. The processor must have both its
index registers and its accumulator in sixteen-bit modes before calling this routine.
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0001 0000 KEEP KL.14.1
0002 0000
0003 0000
0004 0000 ; 16 by 16 = 16-bit multiply for 6502 microprocessor
0005 0000 ; operand 1: sixteen bitsin direct pageloc MCANDL/MCAND1+1
0006 0000 ; operand 2: sixteen bitsin direct page loc MCAND2/MCAND2+2
0007 0000 ; result: returned in X-Y (hi —l0)
0008 0000 ; all origina register values are destroyed
0009 0000
0010 0000 MULT START
0011 0000 MCAND1 GEQU  $80
0012 0000 MCAND2 GEQU  $82
0013 0000
0014 0000 A200 LDX #0 initialize result (hi)
0015 0002 AO000 LDY #0 initialize result (lo)
0016 0004
0017 0004 A580 MULT1 LDA MCAND1 operand 1 (l0)
0018 0006 0581 ORA MCAND1+1 operand hi (hi); if 16-bit operand 1 is 0O, done
0019 0008 FO016 BEQ DONE
0020 O000A 4681 LSR MCAND1+1  get right bit, operand 1
0021 000C 6680 ROR MCAND1
0022 O00OE 9909 BCC MULT2 if clear, no addition to previous products
0023 0010 18 CLC else add oprd 2 to partial result
0024 0011 98 TYA
0025 0012 6582 ADC MCAND2
0026 0014 A8 TAY
0027 0015 8A TXA
0028 0016 6583 ADC MCAND2+1
0029 0018 AA TAX
0030 0019
0031 0019 0682 MULT2 ASL MCAND2 now shift oprd 2 left for poss. add next
iteration
0032 001B 2683 ROL MCAND2+1
0033 001D 4C0400 JMP MULT1
0034 0020
0035 0020 60 DONE RTS
0036 0021
0037 0021 END
Listing 14.1

206



The Western Design Center

0001 0000 KEEP KL.14.2.
0002 0000 65816 ON
0003 0000
0004 0000 ; 16 by 16 = 16 multiply
0005 0000 ; for 65802/65816 microprocessors in native mode with
0006 0000 ;  index registers and accumulator already set to 16 bits
0007 0000 ; operand 1: sixteen bitsin direct page location MCAND1
0008 0000 ; operand 2: sixteen bitsin direct page location MCAND2
0009 0000 ; result: sixteen bits returned in accumulator
0010 0000
0011 0000 MULT START
0012 0000 MCAND1 GEQU $80
0013 0000 MCAND2 GEQU $82
0014 0000
0015 0000 18 CLC
0016 0001 FB XCE
0017 0002 C230 REP #$30
0018 0004
0019 0004 LONGA ON tell assembler about
0020 0004 LONGI ON index & accum settings
0021 0004
0022 0004  A90000 LDA #0 initialize result
0023 0007
0024 0007 A680 MULT1 LDX MCAND1  get operand 1
0025 0009 FOOB BEQ DONE if operand 1 is zero, done
0026 000B 4680 LSR MCAND1  get right bit, operand 1
0027 000D 9003 BCC MULT2 if clear, no addition to previous products
0028 OOOF 18 CLC else add oprd 2 to partial result
0029 0010 6582 ADC MCAND2
0030 0012
0031 0012 0682 MULT2 ASL MCAND2  now shift oprd 2 left for poss add next time
0032 0014 80F1 BRA MULT1
0033 0016
0034 0016 38 DONE SEC
0035 0017 FB XCE
0036 0018 60 RTS
0037 0019 END
Listing 14.2
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Along the same lines, notice that the first two lines of the subroutine are the mode directives — L ONGA
ON and LONGI ON — which inform the assembler that al three registers have been set to sixteen bits. That
way, when the accumulator is loaded with immediate zero, the assembler will generate a sixteen-bit operand
rather than an incorrect eight-bit one, which would cause program failure when executed.

The RT Sinstruction is the intra-bank return instruction. An RTL instruction could be substituted if the
subroutine were intended to be called only by long jump-to-subroutine instructions, whether by code outside the
bank or by code within it. 'Y ou should document such a requirement in the routine’ s introductory comments.

Division

Probably the most common division routine written for eight-bit applications is the converse of the
multiply routine just covered — to divide one sixteen-bit number by another sixteen-bit number, returning both a
sixteen-bit quotient and a sixteen-bit remainder.

There are severa methods for doing this, but al are based on the division principles for multi-digit
numbers that you learned in grade school. Line up the divisor under the left-most set of digits of the dividend,
appending an imaginary set of zeroes out to the right, and subtract as many times as possible. Record the
number of successful subtractions; then shift the divisor right one place and continue until the divisor is flush
right with the dividend, and no more subtractions are possible. Any non-subtractable value remaining is called

the remainder.
M,_lzzn remainder 1
2344 28622585

- 2344
5182585
-2344
2838585
-2344
494585
=2344
260185
-2344
25785
-2344
2345
=2344
1

Binary division is even easier since, with only ones and zeroes, subtraction is possible at each digit
position either only once or not at all:

1100 remainder 1 12 remainder 1

101 111101 g 61
-101 -5
10101 11

-101 ol
01 6

-5

1
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Many programs calling this division routine will need only the quotient or only the remainder, although
some will require both. The routines here return both.

6502 Division

The 6502, with its three eight-bit registers, handles passing parameters to and from a division routine
even less smoothly than to and from a multiplication routine: not only do you need to pass it two sixteen-bit
values, but it needs to pass back two sixteen-bit results.

The solution used in Listing 14.3 is to pass the dividend and the divisor in two direct page double bytes,
then pass back the remainder in adirect page double byte and the quotient in two registers.
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0001 0000 KEEP KL.14.3.
0002 0000
0003 0000
0004 0000 ; 16 divided by 16 = 16 divide for 6502 microprocessor
0005 0000 ; divide DIVDND / DIVSOR ® XA (hi —10); remainder in DIVDND
0006 0000 ; DIVDND and DIVSOR are direct page double byte cells
0007 0000 ; no specia handling for divided by zero (returns $FFFF quotient)
0008 0000
0009 0000 DIV START
0010 0000 DIVDND GEQU $80
0011 0000 DIVSOR GEQU $82
0012 0000
0013 0000
0014 0002 A900 LDA #0
0015 0003 AA TAX initialize quotient (hi)
0016 0004 48 PHA initialize quotient (10)
0017 0006  A001 LDY #1 initialize shift count = 1
0018 0008 A582 LDA DIVSOR get high byte of divisor
0019 O000A  300B BMI DIV2 braif divisor can't be shifted left
0020 O00A C8 DIV1 INY else shift divisor to leftmost position
0021 000B 0682 ASL DIVSOR
0022 000D 2683 ROL DIVSOR+1  test divisor
0023 O000F 3004 BMI DIV2 doneif divisor in leftmost position
0024 0011 CO011 CPY #17 max count (all zeroesin divisor)
0025 0013 DOF5 BNE DIV1 loop if not done
0026 0015
0027 0015 38 DIV2 SEC now do division by subtraction
0028 0016  A580 LDA DIVDND subtract divisor from dividend
0029 0018 E582 SBC DIVSOR low bytes first
0030 001A 48 PHA save to difference temporarily on stack
0031 001B A581 LDA DIVDND+1 then subtract high bytes
0032 001D E583 SBC DIVSOR+1
0033 O001F E583 BCC DIV3 braif can't subtract divisor from dividend
0034 0021 ; elsecarry is set to shift into quotient
0035 0021 8581 STA DIVDND+1 store high byte of difference
0036 0023 68 PLA get low subtract result from stack
0037 0024 8580 STA DIVDND
0038 0026 48 PHA restore low subtract result ® stack for pull
0039 0027 68 DIV3 PLA throw away low subtract result
0040 0028 68 PLA bet quotient low byte from stack
0041 0029 2A ROL A shift carry ® quotient (1 for divide, O for not)
0042 002A 48 PHA put back on stack
0043 002B 8A TXA get quotient high byte
0044 002C 2A ROL A continue shift ® quotient (high)
0045 002D AA TAX put back in x
0046 002E 4683 LSR DIVSOR+1  shift divisor right for next subtract
0047 0030 6682 ROR DIVSOR
0048 0032 88 DEY decrement count
0049 0033 DOEO BNE DIV2 branch unless done (count is 0)
0050 0035
0051 0035 68 DONE PLA get quotient (lo)
0052 0036 60 RTS
0053 0037
0054 0037 END
Listing 14.3
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The label DONE is not needed (there is no branch to the location), but was added for clarity.

The routine at DIV2 may seem curious. The 6502 has no sixteen-bit compare; to compare two sixteen-
bit numbers, you must actually subtract them (setting the carry first, as is required before a subtract using the
65x SBC instruction). So the divisor is subtracted from the dividend, with the low result saved on the stack. If
the carry is clear, the divisor is too large to be subtracted from the dividend. Thus a branch is taken to DIV 3,
where the low result is pulled but not used and the cleared carry is rolled into the quotient to acknowledge the
unsuccessful subtraction. If the carry is set, then the high result, till in the accumulator, is stored, and the low
result is pulled from the stack, stored, then restacked to be repulled atD1V 3; since the carry is known to be set, it
does not need to be explicitly set before rolling it into the quotient to acknowledge the successful subtraction.

The quotient isreturned in register X and A.

This 6502 divide routine takes 55 bytes.

65C02 Division

The 65C02 routine is virtually the same; only three early instructions (shown in Fragment 14.1) in the
6502 routine are changed to the code in Fragment 14.2, for a net savings of one byte, because the 65C02 has
instructions to push the index registers. This 65C02 divide routine takes 54 bytes, one byte fewer than the 6502
divide routine takes.

0000 A900 LDA #0
0002 AA TAX
0003 48 PHA

Fragment 14.1

0000 AZ200 LDX #0
0002 DA PHX

Fragment 14.2

65802/65816 Division

The 65802 and 65816 processors, with their registers extendable to sixteen bits, can handle sixteen-bit
divison with ease. In the divide routine in Listing 14.4, the dividend and the divisor are passed in sixteen-bit
registers X and A respectively; the quotient is passed back in a sixteen-bit direct page location and the
remainder in X.
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0001 0000 KEEP KL.14.4
0002 0000 65816 ON
0003 0000
0004 0000 ; 16 divided by 16 = 16 divide for 65802/65816 microprocessor
0005 0000 ; 16-bit divide: X /A ® QUOTNT; remainder in X
0006 0000 ; QUOTNT isa 16-bit direct page cell
0007 0000 ; native mode: all registers set to 16-bit modes
0008 0000 ; no specia handling for divide by zero (returns $FFFF quotient)
0009 0000
0010 0000 DIV START
0011 0000 QUOTNT GEQU $80
0012 0000
0013 0001
0014 0002
0015 0004
0016 0004 LONGA ON tell assembler about 16-bit
0017 0004 LONGI ON index & accumulator setting
0018 0004
0019 0004 6480 STZ QUOTNT initialize quotient to O
0020 0006  A00100 LDY #1 initialize shift count to 1
0021 0009
0022 0009 OA DIvV1 ASL A shift divisor: test leftmost bit
0023 O000A BOO06 BCS DIV2 branch when get leftmost bit
0024 000C C8 INY else increment shift count
0025 000D C01100 CPY #17 max count (all zeroesin divisor)
0026 0010 DOF7 BNE DIV1 loop if not done
0027 0012
0028 0012 6A DIV2 ROR A put shifted-out bit back
0029 0013
0030 0013 ; now divide by subtraction
0031 0013 48 DIV4 PHA push divisor
0032 0014 8A TXA get dividend into accumulator
0033 0015 38 SEC
0034 0016 E301 SBC 1S subtract divisor from dividend
0035 0018 9001 BCC DIV3 braif can't subtract; dividend still in X
0036 001A AA TAX store new dividend; carry=1 for quotient
0037 001B
0038 001B 2680 DIV3 ROL QUOTNT  shift carry ® quotient (1 for divide, O for not)
0039 001D 68 PLA pull divisor
0040 O001E 4A LSR A shift divisor right for next subtract
0041 O001F 88 DEY DIV4 decrement count
0042 0020 DOF1 BNE branch to repeat unless count is 0
0043 0022
0044 0022
0045 0023
0046 0024 60 RTS
0047 0025 END
Listing 14.4.
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This divide routine for the 65802 and 65816 generates only 31 bytes, little more than half the bytes the
6502 and 65C02 divide routines generate.

As the introductory comments note, it requires the processor to be in native mode and the m and x
memory select flags to be in sixteen-bit modes before the routine is called; these requirements become doubly
obvious when you see in another of the comments that the values passed in the accumulator and an index
register are sixteen bits, with one of the two sixteen-bit results being passed back in one of the same registers.
Assemblers, however, do not read comments; they only read instructions and directives. That's the reason for
the LONGA ON and LONGI ON directives at the beginning of the routine.

Calling an Arbitrary 6502 Routine

Particularly during the early phases of the processor’s life cycle, you might wish to mix existing 6502
code with your 65816 applications. The routine provided below provides a general purpose way of doing this.
Additionally, the context-saving code illustrated here could prove useful in other applications. You'll find
similar code in the debugger in the next chapter, where it is needed to save the context between instructions of
the user program being traced.

The smplest way to call a 6502 routine from the 65802 or 65816 is found in Fragment 14.3.

0000 38 SEC
0001 FB XCE
0002 200080 JSR D06502

Fragment 14.3

Although this will work fine in some cases, it is not guaranteed to. In order to be assured of correct
functioning of an existing 6502 routine, the direct page register must be reset to zero and the stack pointer must
be relocated to page one. Although a 6502 program that uses zero page addressing will technically function
correctly if the direct page has been relocated, the possibility that the zero page may be addressed using some
form of absolute addressing, not to mention the probability that an existing 6502 monitor or operating system
routine would expect to use values previoudly initialized and stored in the zero page, requires that this register
be given its default 6502 value.

If the stack has been relocated from page one, it will be lost when the switch to emulation mode
substitutes the mandatory stack high byte of one. So first, the sixteen-bit stack pointer must be saved. Second,
if the 65802/65816 program was called from a 6502 environment, then there may be 6502 values on the original
6502 page-one stack; such a program must squirrel away the 6502 stack pointer on entry so it can be restored on
exit, aswell as used during temporary incursions, such as this routine, into the 6502 environment.

The god, then, is this: provide a mechanism whereby a programmer may simply pass the address of a
resident 6502 routine and any registers required for the call to a utility which will transfer control to the 6502
routine; the registers should be returned with their original (potentially sixteen-bits) values intact, except as
modified by the 6502 routine; and finally the operating mode must be restored to its state before the call.

When loading the registers with any needed parameters, keep in mind that only the low-order values
will be passed to a 6502 subroutine, even though this routine may be entered from either eight- or sixteen-bit
modes.

The call itself is simple; you push the address of the routine to be called, minus one, onto the stack,
typicaly using the PEA instruction. Then you call the routine, which executes the subroutine call and manages

all of the necessary housekeeping. Fragment 14.4 gives an example of calling the routine.
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0000 A94100 LDA #A character to be printed
0003 F4ECFD PEA $FDED-1 routine to be called
0006 200080 JSR JSR6502

Fragment 14.4

$FDED isthe address of an existing Apple | | routine to print charact4ers, and JSR6502 is the routine described
in Listing 14.5.
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0001 0000 KEEP KL.14.5

0002 0000 65816 ON

0003 0000

0004 0000 JSR6502  START

0005 0000

0006 0000

0007 0000 ; used by 65816 program called by 6502 code before moving stack

0008 0000

0009 0000 08 PHP save flags, including register sizes
0010 0001

0011 0001 C230 REP #$30 set al registersto 16 bits

0012 0003 LONGA ON

0013 0003 LONGI ON

0014 0003

0015 0003 DA PHX then push them

0016 0004 B5A PHY push index regs

0017 0005 OB PHD push direct page base

0018 0006 48 PHA push accum

0019 0007

0020 0007 ; set up page-1 stack ptr, saving 65802 stack ptr in DP & on new stack

0021 0007 38 TSC save old stack pointer in

0022 0008 5B TCD direct page register

0023 0009 2900FF AND #$FFOO0 mask stack pointer to examine high byte
0024 000C (90001 CMP #$100

0025 OO0OF FO0o4 BEQ USESTK branch if stack already in page 1
0026 0011 ADA4F00 LDA STK6502 elseretrieve safe 6502 stack pointer
0027 0014 1B TCS and load stack pointer with it

0028 0015 OB USESTK  PHD push old stack pointer onto new stack
0029 0016

0030 0016 ; set up areturn-to-this-code return address on new stack

0031 0016 ; (direct page register points to old stack with orig accum at 1)

0032 0016

0033 0016 F42700 PEA RETURN-1 push local return address (out exit code)
0034 0019 D4oC PEI (12 push routine addr from prev stack onto this one
0035 001B ABS0A LDA 10 shuffle return address

0036 001D 850C STA 12 to bottom of old stack

0037 001F AbL01 LDA 1 restore accum from prev stack using dp reg
0038 0021

0039 0021 ; set direct page to zero page

0040 0021 F40000 PEA 0 set direct page

0041 0024 2B PLD to zero page

0042 0025

0043 0025 : switch to emulation mode

0044 0025 38 SEC

0045 0026 FB XCE switch to emulation mode

0046 0027 LONGA OFF

0047 0027 LONGI OFF

0048 0027

0049 0027 : and call 6502 routine

0050 0027 60 RTS JSR (viaRTS) to 6502 routine @ stacked addr
0051 0028

0052 0028 ;

0053 0028 : 6502 routine returns here

0054 0028 08 RETURN  PHP now save returned flag results from 6502 code
0055 0029 EB XBA save returned A accum in B accum
0056 002A 68 PLA get flagsinto A accum

0057 002B 2B PLD get old stack pointer

0058 002C

0059 002C ; address old stack values as direct page:

0060 002C ; dp (stack) offset 12.13 = return address back to 65802/65816 code

0061 002C ; 10.11 = unused (orig held addr of 6502 routine)

0062 002C ; 9=orig Pflags

0063 002C ; 7.8 = orig 16-hit X

0064 002C ; 5.6 = orig 16-hit Y

0065 002C ; 3.4 =orig DP

0066 002C ; 1.2 = orig 16-bit accum
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0067 002C ; 0 = was next available stack location

0068 002C

0069 002C ; combine returned condition flags with 65802/816 mode flags

0070 002C 29CF AND #%11001111  mask out m & x flags

0071 O002E 850B STA 11 save for aminute; dp:11isfree
0072 0030 ABL09 LDA 9 get orig P value

0073 0032 2930 AND #%00110000 mask out all but m & x flags
0074 0034 050B ORA 11 combine new condition flags with old m & x
0075 0036 850B STA 11 storenew P @ 11

0076 0038 : 9.10in old stack now free

0077 0038

0078 0038 ; saveregisters returned from 6502 routine

0079 0038 EB XBA swap: 6502 accum back to A

0080 0039 8501 STA 1 save returned accumulator low
0081 003B 8405 STY 5 savereturned Y low

0082 003D 8607 STX 7 save returned X low

0083 003F

0084 O03F 18 CLC

0085 0040 FB XCE restore native mode

0086 0041

0087 0041 C230 REP #$30 extend register size back to 16 hits
0088 0043 LONGA ON

0089 0043 LONGI ON

0090 0043

0091 0043 OB PHD

0092 0044 FA PLX

0093 0045 O9A TXS restore old stack pointer

0094 0046

0095 0046 ; but till address old stack via direct page

0096 0046

0097 0046 68 PLA copy accum to free stack bytes @ dp:9.10.
0098 0047 8509 STA 9

0099 0049 ; stack was moved by PLA, but DP was not

0100 0049

0101 0049 ; pull registers from stack

0102 0049 2B PLD restore old direct page

0103 O004A 7A PLY

0104 004B FA PLX

0105 004C 68 PLA load accumulator again

0106 004D 28 PLP get 6502 condition flags; 65802/816 modes
0107 OO4E

0108 O004E 60 RTS done!

0109 OO04F

0110 004F 8001 STK6502 DC A’$180 arbitrary ‘safe’ stack in page one
0111 0051 ; smart user will store last page one
0112 0051 ; stack value here before switching stack
0113 0051 ; out of page one

0114 0051

0115 0051 END

Listing 14.5

The routine is entered with the return address on the top of the stack, and the go-to address of the 6502
routine at the next location on the stack. Since you want to be able to restore the m and x mode flags, the first
thing the routine does is push the status register onto the stack. The REP #$30 instruction, which follows, puts
the processor into a known state, since the routine can be called from any of the four possible register-size
modes. The long accumulator, long index mode is the obvious choice because it encompasses all the others.
The user registers, including the direct page register, are saved on the stack, and then the stack pointer itself is
saved to the direct page register via the accumulator. This has two benefits: it preserves the value of the old
stack pointer across a relocation of the stack, and provides a means of accessing all of the data on the old stack
after it has been relocated. This technique is of general usefulness, and should be understood clearly. Figure
14.1, which shows the state of the machine after line 0034 (the PEI instruction), hel ps make this clear.

The stack must be relocated to page one only if it is not already there. If it is elsawhere, then the last
6502 page-one stack pointer should be restored from where it was cubbyholed when the 65802/65816 program
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took control and moved the stack elsewhere. If there is no previous 6502 stack to avoid, any page one address
could be used to initialize the temporary 6502 stack needed.

The first item that goes onto the new stack is the value of the old stack pointer, now found in the direct
page register. Next, a local return address must be pushed on the stack for when the called 6502 routine
executesan RTS.

While the direct page register was pushed onto the new stack, it retains its value, and still points to the
old stack; so athough the stack pointer has been relocated, you still have access to the values on the old stack
via direct page addressing. One of the needed items is the go-to address, the address of the 6502 routine to be
caled. Since the size of all of the elements pushed on the stack is known, by referencing the direct page
location 12, thisvalue is retrieved. A PEI (push indirect) instruction is used to transfer the routine to be called
from the old stack (now being referenced via the direct page) to the new stack. This frees up the double byte on
the old stack dp:12.13, the bottom of the old stack; the return address is shuffled in from dp:10.11, freeing those
two bytes.
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FD ADDRESS OF
6502 ROUTINE
EC
C3 RETURN
ADDRESS
4F
P P REGISTER
XH
X REGISTER
XL
YH
Y REGISTER
YL
DPH
DIRECT PAGE
DPL
AH
ACCUMULATOR
40 OLD- STACK AL
20 POINTER $4020
30 RETURN
ADDRESS
4D
FD ADDRESS- OF
6502 ROTUINE
EC
STACK
POINTER
STACK

DIRECT~ PAGE
(OLD STACK)

Figure 14-1 Stack Snapshot after PEI (12) Instruction

The accumulator was used during these operations, and must be restored because it may contain one of
the parameters required by the 6502 routine. Like the go-to address, the accumulator is loaded from the old
stack using direct page addressing.

Having restored the accumulator, all that remains is to set the direct page register to zero; since no
registers can be modified at this point, thisis accomplished by pushing a zero onto the stack, and then pulling it
into the direct page register.

When you switch the processor into emulation mode, the environment is as it should be; the new stack
is how set up to transfer control to the 6502 subroutine via the execution of an RTS instruction which, rather
than exiting the JSR6502 routine, performs a kind of jump indirect to the value on top of the stack, the go-to
address. The use of the RT Sto transfer control to the 6502 routine is the reason the address minus one is put on
the stack to begin with. This requirement could be eliminated if the go-to address was decremented before
being pushed on the page one stack; but this would require the execution of two additional instructions, one to
load it into aregister, and one to decrement. PEI moves the value directly onto the stack from the direct page.
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When control returns from the 6502 routine, the flags, representing the 6502 routine's results, are
pushed, then pulled into the eight-bit A accumulator after its value has been saved by transferring it to the B
accumulator with an XBA. The only other item left on the new stack is the old stack pointer. Thisis pulled into
the direct page register, which immediately restores access to al of the values pushed onto the old stack.

The condition code bits in the returned status register are merged with the mode flags in the origina
status register. The eight-bit result is stored in the location immediately below the return address.

The register values upon return are saved into the locations where the registers were originaly pushed
on the stack. Since the processor is still in emulation mode, only the low bytes are stored; the high bytes of any
of the 65802/65816 registers are always preserved (which means that if alow byte is unchanged, then the entire
double-byte value is preserved).

The native mode is restored. The registers are extended to sixteen bits. The stack pointer is restored
from the direct page register.

There remains a gap on the stack; the value of the accumulator is copied there. The registers are now
restored, with the accumulator being pulled a second time from its new location.

Control is now back with the calling 65816 program, the processor never the wiser for having been
transformed into a 6502.

This coding presumes that the calling code, the switching routine, and the 6502 routine are al located in
the same bank, bank zero. It also assumes a data bank of zero. Should the 6502 routine be in a non-zero bank,
then you should save its program bank to a safe location prior to the switch to emulation mode so that it cannot
be lost in case of interrupt. You should also check your emulation mode interrupt service routines to be sure
they restore the program bank from the safe location prior to returning.

Finally, should the calling code be in a bank different from the 6502 routine, you'll have to locate the
switching code in the same bank with the 6502 routine (its return will be an RTS); call the switching code with
a JSL; move the pushed program bank down two bytes to the bottom of the stack before relocating the return
address; and return to the calling code viaan RTL.

Testing Processor Type

A related utility routine (Listing 14.6) checks the processor type, allowing code targeted for the large
6502 installed-base to take advantage of a 65C02 or 65802/65816 if available. The processor is assumed to be
in emulation mode if it is a 65816 or 65802.

This routine takes advantage of the fact that the 65C02 and 65816 set the sign flag correctly in the
decima mode, while the 6502 does not. The sign flag is set (minus) after loading $99 (a negative two's-
complement number). When one is added to BCD 99, the result is BCD 0, a positive two's-complement
number. On the 6502, adding one decimal mode does not affect the sign flag. On the 65C02 and 65816, the
sign flag is cleared to reflect that adding one results in a positive value (zero).

Having distinguished between the 65C02 and the 6502, the code further distinguishes between the
65C02 and 65816 by trying to execute one of the new 65816 instructions — specifically, the XCE instruction. If
a 65C02 is in use, the execution of XCE has no effect; it smply performs a no-op, and the carry flag remains
clear. On a 65816 in emulation mode, the carry flag would be set after exchanging.
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0001 0000 KEEP KL.14.6
0002 0000 65816 ON
0003 0000
0004 0000 LONGA OFF
0005 0000 LONGI OFF generate ‘6502’ code
0006 0000
0007 0000 ; CHECK - -
0008 0000 ; CHECK PROCESSOR TYPE
0009 0000 ; MINUS = 6502
0010 0000 ; CARRY CLEAR = 65C02
0011 0000 ; CARRY SET = 65816
0012 0000
0013 0000 CHECK START
0014 0000 F8 SED Trick with decimal mode used
0015 0001 A999 LDA #$99 set negative flag
0016 0003 18 CLC
0017 0004 6901 ADC #$01 add 1 to get new accum value of O
0018 0006 3006 BMI DONE branch if 0 does not clear negative flag: 6502
0019 0008
0020 0008 ; else 65C02 or 65802 if neg flag cleared by decimal-mode arith
0021 0008
0022 0008 18 CLC
0023 0009 FB XCE OK to execute unimplemented CO2 opcodes
0024 000A 9002 BCC DONE branch if didn’t do anything:65C02
0025 000C FB XCE switch back to emulation mode
0026 000D 38 SEC set carry
0027 OOOE D8 DONE CLD binary
0028 OOOF 60 RTS
0029 0010 END
Listing 14.6

Compiler-Generated 65816 Code for a Recur siveProgram

Although it is not directly relevant to assembly-language programming per se, alook at how a compiler
might generate 65816 code provides another angle on 65816 program design. You may also find it helpful
when you are writing in a high-level language to have some idea as to what kind of code your compiler might
be generating.

For the brief example presented here, an integer-only subset of the C programming language — such as
the dialect known as “small C" —isused. To understand C, it is important to understand the concept of the
pointer. Effectively, apointer is avariable that holds the address of another data structure. C programmers are
particularly known for their liberal use of pointers, primarily because they provide a method to manipulate data
structures that is very close to the machine level. The concept of the variable itself is an abstraction which
generally resultsin additional overhead.

The most notable thing about the use of pointers in the example is that they are limited to sixteen bits,
even though the 65816 has an address space of sixteen megabytes. The sixteen-bit machine word size was
chosen both for pointers and for the storage type int; this lets many operations be implemented using one or two
65816 instructions. As a consequence, the memory model used with this compiler limits data storage to 64K;
program storage is also limited to 64K. If the loader for this hypothetical compiler supports loading of constant
data and program code into separate banks, atotal of 128K memory would be available to the program.

The first line of the program, shown in Listing 14.7, is the declaration of the function main. By
convention, the function main is always called as the entry point to a program; it typically (but not necessarily)
isthefirst routine coded, asit isin this example.

The curly braces define the function block; the first statement in the block is the declaration of y, which
isapointer variable. In C, pointers are typed by the type of the data object to which they point.
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main ();

{
char *y;
y ="A gtring to invert”;
invert (y);

}

invert (yy) char *yy;
{

if ("yy)

{

invert (yy+1);
putchar (*yy);
}

}

Listing 14.7

The first executable statement is the assignment of the string constant “A string to invert” to the
variabley. In this context, the y appears without the asterisk, because the variable is being given a value — an
address — rather than the string it points to. The C compiler always returns the address of a string and zero-
terminates it when it encounters a string constant.

The next statement is a call to the function invert with a parameter of y (which is the variable that just
received a value in the preceding statement). Invert is the function that actually does the work of this program,
which, as you may have guessed by now, prints an inverted (backwards) string.

After the closing brace for main comes the declaration of the function invert. Invert takes a parameter
—apointer to acharacter. When invert is called from main with y as the parameter, yy assumes the value of y.

The code of invert tests the value pointed to by yy; the first time invert is called, this will be the letter
“A”, the first character in the string constant. The test is whether or not the value “at yy” is non-zero or not; if it
is non-zero, the statements within the braces will be executed. If (or when) the value is equal to zero, the code
within the bracesis skipped.

Looking at the first of the pair of lines contained within the braces, you will find that it is a call to
invert — the same function presently being defined. This calling of a routine from within itself is called
recursion, and programming languages such a C or Pascal, which allocate their local variables on the stack,
make it easy to write recursive programs such as this one. The merits of using recursion for any given problem
are the subject for another discussion; however, as seen in the example, it seems quite useful for the task at
hand. What happens when this function calls itself will be explored in a moment, as the generated code itself is
discussed.

The last executable line of the program calls the routine putchar, an I/O routine that outputs the value
passed it as a character on the standard (default) output device.

Returning to the top of the program, Listing 14.8 shows the code generated by the compiler to execute
the C program; it is inter-listed with the source code — each line of compiler source appears as an assembler-
source comment.

Before the first statement is compiled, the compiler has aready generated some code: a jump to a
routine labeled CCMAIN. CCMAIN is a library routine that performs the “housekeeping” necessary to
provide the right environment for the generated code to run in. At the very least, CCM AIN must make sure the
processor is in the native mode, and switch into the default (for the compiler) sixteen-bit index and accumulator
word sizes. |If the operating system supportsit, it should also initialize the variable ar gc and ar gv, which allow
the programmer access to command-line parameters, although they are not used in this example. Finaly,
CCMAIN will call main to begin execution of the user-writer code itself.
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0001
0002
0003
0004
0005
0006

0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049

0050
0051
0052
0053
0054

0000
0000
0000
0000
0000
0003

0000
0000
0000
0000
0000
0000
0001
0004
0006
0006
0008
0009
000C
000D
000D
000E
OOOF

0000
0000
0000
0000
0000
0003
0005
0008
000A
000D
000D
000D
OOOF
0010
0011
0014
0015
0015
0018
001A
001B
001E
001F
001F
001F
0020

0000
0000
0000
0008
0010

4C0080

DA
A90080
8301

A301
48
200080
FA

FA
60

A00000
B303
29FF00
D003
4C1F00

A303
1A

48
200080
FA

A00000
B303
48
200080
FA

60

41207374
20746F20
727400

KEEP A.OUT

DC 11'$41,$20,$73,$74,$72,$69,$6E,$67’
DC 11’ $20,$74,$6F,$20,$69,$6E,$76,$65'

65816 ON

CCo START
JMP CCMAIN
END

; main ();

main START

{

; char *y;

; y="A string to invert”;
PHX
LDA #CCCO0+0
STA 1S

;invert (y);
LDA 1S
PHA
JSR invert
PLX

3
PLX
RTS
END

; invert (yy) char *yy;

invert START

{

i (tyy)
LDY #0
LDA (3,.9,Y
AND H#BFF
BNE *+5
JMP CC3

;o

; invert (yy+1);
LDA 3,S
INC A
PHA
JSR invert
PLX

; putchar (*yy)
LDY #0
LDA (3,.9,Y
PHA
JSR putchar
PLX

;)

3

CC3 RTS
END

CccCo START
DC 11'$72,$74,$00
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0055 0013 END

0056 0000

0057 0000 ; ‘LIBRARY’ ROUTINES- - ASIF TOBE LINKED TO
0058 0000 ; SOURCE PROGRAM
0059 0000

0060 0000 CCMAIN  START

0061 0000 18 CLC

0062 0001 FB XCE

0063 0002 C230 REP #$30

0064 0004 200080 JSR MAIN
0065 0007 38 SEC

0066 0008 FB XCE

0067 0009 60 RTS

0068 000A END

0069 0000

0070 0000

0071 0000 ;UTCHA START

0072 0000 CouT GEQU  $FDED  Applel | character output
0073 0000

0074 0000

0075 0000 A303 LDA 3,S get parameter from stack
0076 0002

0077 0002 08 PHP

0078 0003 38 SEC

0079 0004 FB XCE

0080 0005 20EDFD JSR CouT
0081 0008 18 CLC

0082 0009 FB XCE

0083 000A

0084 O000A 28 PLP

0085 000B 60 RTS

0086 000C END

Listing 14.8

The declaration of main causes an assembler START statement to be output; this ssimply defines the
beginning of the subroutine or function. The declaration char *y will cause the PHX instruction to be
generated after the first line of executable code is generated; this reserves space for one variable (the pointer y)
on the stack. That first executable code line is the assignment y = “A string to invert”. This causes the
address of the string constant, which will be temporarily stored at the end of the generated program, to be
loaded into the accumulator. The address just loaded into the accumulator is now stored on the stack in the
memory reserved for it by the PHX instruction; the value of X that was pushed onto the stack was meaningless
initself.

The next statement to be compiled is a call to the function invert with the variable y as the parameter.
This causes the value stored on the stack to be loaded back into the accumulator, where it is then pushed onto
the stack. All parametersto function calls are passed on the stack.

Note that the accumulator aready contained the value stored on the top of the stack; the LDA 1,S
instruction was redundant. However, the hypothetical compiler in this example does not optimize across
statements, so the potential optimization — elimination of the load instruction — cannot be realized. Once the
parameter is on the top of the stack, the function itself is called viaa JSR instruction. Since the program space
islimited to 64K, only a sixteen-bit subroutine call is used. After the cal returns, the PL X instruction removes
the no-longer-needed parameter from the stack. The right bracket indicating the end of the function main
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causes the compiler to generate another PLX to remove the viable storage, an RTS instruction, and an
assembler END statement.

Invert is defined as having one parameter, the character pointer yy. By declaring the function in this
way, the compiler knows to generate code to look for the variable yy on top of the stack whenever areferenceto
itismade. You can see how thisis done by looking at the code generated for the first line, which tests the value
at yy (rather than the value of yy) to see whether it istrue, that is, not equal to zero. To get this value, the stack
relative indirect indexed addressing mode is used. First the Y register is loaded with zero, so that the first
element pointed to by the indirect value on the stack is accessed. The stack offset used is three, rather than one,
because when the subroutine call was made, after the parameter was pushed onto the stack, the return address
was pushed onto the stack, on top of the parameter.

After the value is loaded, it must be ANDed with $FF to mask out the high-order contents, since thisis
a character (one-byte) type of variable.

If the character is not equal to zero, as it is not the first time through, the JIMP CC3 instruction is
skipped, and execution continues with the code generated for the C source statements inside the braces.

The first statement is the recursive call to invert. Similar to the call from main, a parameter is pushed
onto the stack. Since an expression (yy+1) is being passed, however, it must first be evaluated. First the value
of yy is loaded from the stack, and then one is added to it. Although this hypothetical compiler does not
optimize across statements, it apparently does a pretty good job within them, for it has optimized the addition of
one to asingle increment instruction.

Invert is then called again. If you start counting them, you will find that more pushes than pulls will
have been made at this point; in other words, the stack is growing. When invert is reentered, the value it finds
on the stack is the starting address of the string literal plus one; in other words, the second element is being
addressed. As long as the value pointed to by the parameter passed to invert is non-zero, invert will continue
to be called recursively, and the stack will continue to grow. When the last element (with the value of zero) is
reached, the recursive function “bottoms out”; the jump to CC3 that occurs when the value at yy is equal to zero
jumps directly to an RTS instruction. This causes control to return to the next statement after the call invert.
The value of yy in the most recently called invocation (the value at 3,S) will be a pointer to the last character in
the string; it is this character that is first loaded into the accumulator, then pushed, output via a call to the
routine putchar, then pulled again.

Upon return from putchar, control falls through to the RTS instruction, and the next set of values on
the stack are processed. This continues until al of the characters pointed to by the values on the stack have
been printed, in the reverse order in which they were found. Finally, the last return executed pulls the address
of the return address in main off the stack, and the program terminates.

The Same Example Hand-Coded in Assembly Language

A distinctive characteristic of the preceding high-level language programming example
was that the algorithm employed involved recursion. Consider Listing 14.9, which is the same
algorithm hand-coded in assembly language; it is much more efficient than the compiler-
generated example.

224



The Western Design Center

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028

0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

0000
0000
0000
0000
0000
0001
0002
0002
0004
0004
0006
0006
0006
0009
0009
000B
000D
000E
OOOF
0012
0013
0016
0016
0017
0018
0019
0019
002C

0000
0000
0000
0000
0000
0000
0000
0000
0001
0002
0003
0004
0005
0006
0009
000A
000B
000C
000D
000E
OOOF
0010

MAIN
18
FB

C210

E220

A21900

B500 INVERT
FO09

48

E8

200900

68

200080

38 DONE
FB
60

41207374 STRING

CouT
ECOUT

48

DA

5A

08

38

FB

20EDFD

18

FB

28

7A

FA

68

60

KEEP KL.14.9
65816 ON

START
CLC
XCE

REP #$10 16-bit index registers
LONGI ON

SEP #$20 8-bit accumulator
LONGA OFF

LDX #STRING

LDA 0,X
BEQ DONE
PHA

INX

JSR INVERT
PLA

JSR CouT

SEC
XCE
RTS

DC C A string to invert * \H' 00’
END

CouT
machine-department routine to output a character

START

GEQU $FDED Apple// COUT
PHA Save registers

PHX

PHY

PHP and status,

SEC switch to emulation
XCE

JSR ECOUT call 6502 routine
CLC

XCE restore native mode
PLP restore status

PLY restore registers
PLX return

PLA

RTS

END

Listing 14.9
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Because the more elaborate parameter-passing and variable-allocation requirements of the C language
can be bypassed, the example here is much more efficient. (Although some further optimization of the
compiler-generated code, as noted, is possible, the code in the example would probably be a typical result.)

To start with, a more intelligent decision about the mode flags is made right from the start, rather than
coping with the default sixteen-bit accumulator size of the compiler code by making out the high-order byte
whenever a character is |oaded.

Secondly, full use of the index register is made, both to access the data and as the parameter-passing
mechanism. Rather than push successive pointers to the inverted character string on the stack, the character
itself is stored.

If this routine will be used to invert a single, known string (as opposed to making INVERT a
subroutine for inverting any string, the beginning character of which is pointed to by the X register), then any
assembly language programmer would simply write the code found in Listing 14.10. When the assembler
evaluates the L DX instruction’s operand, the “L:” function determines the length of STRING.

The Sieve of Eratosthenes Benchmark

With all of the different factors that affect system performance, it is difficult to find a clear criterion by
which to judge a processor’s performance. Rightly or wrongly, the speed with which a processor runs a
standard “benchmark” program is often used in forming a judgement of it. One of the most commonly used
(and cited) benchmarks is the Sieve of Eratosthenes algorithm. The use of the Sieve program first gained
popularity as the result of articles written by Jim Gilbreath and Gary Gilbreath, appearing in BYTE magazine
(September 1980, page 180), and updated in January 1983 (page 283).
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0001 0000 KEEP KL.14.10

0002 0000 65816 ON

0003 0000

0004 0000 MAIN START

0005 0000

0006 0000 C210 REP #$10 16-bit index registers
0007 0002 LONGI ON

0008 0002 E220 SEP #%$20 8-bit accumulator
0009 0004 LONGA OFF

0010 0004

0011 0004 A21700 LDX #L:STRING-1  get length of string less one
0012 0007

0013 0007 BD1100 INVERT LDA STRING,X get a char from end of string
0014 O0O00A 200080 JSR CouT and output it

0015 000D CA DEX point to previous char
0016 OO00E 10F7 BPL INVERT and loop through al characters
0017 0010 60 DONE RTS

0018 0011 41207374 STRING DC C' A string to invert * ,H' 00’

0019 0024 END

0020 0000

0021 0000

0022 0000 ; CouT

0023 0000 ; machine-dependent routine to output a character
0024 0000 ;

0025 0000 CouT START

0026 0000 ECOUT GEQU $FDED Applel I COUT
0027 0000 48 PHA Save registers

0028 0001 DA PHX

0029 0002 5A PHY

0030 0003 08 PHP and status,

0031 0004 38 SEC switch to emulation
0032 0005 FB XCE

0033 0006 20EDFD JSR ECOUT call 6502 routine
0034 0009 18 CLC

0035 O000A FB XCE restore native mode
0036 000B 28 PLP restore status

0037 000C 7A PLY restore registers
0038 000D FA PLX return

0039 O0O0OE 68 PLA

0040 O0OOF 60 RTS

0041 0010 END

Listing 14.10

The Sieve program calculates the prime numbers between 3 and 16,381, it is based on an algorithm
originadly attributed to the Greek mathematician Eratosthenes. The basic procedure is to eliminate every nth
number after a given number n, up to the limit of range within which primes are desired. Presumably the range
of primesisitsalf infinite.

Aswaell as providing a common yardstick with which to gauge the 65816, the Sieve program in Listing
14.11 provides an opportunity to examine performance-oriented programming; since the name of the game is
performance, any and all techniques are valid in coding an assembly-language version of a benchmark.

Four variable locations are defined for the program. ITER counts down the number of times the
routine is executed; to time it accurately, the test is repeated 100 times. COUNT holds the count of primes
discovered. K isatemporary variable. And PRIME isthe value of the current prime number.

The variable | has no storage reserved for it because the Y register is used; it is an index counter. Y is
used instead of X because certain indexed operations need the absolute, X addressing mode.
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The constant SIZE is equa to one-half of the range of numbers within which the primes are to be
discovered; this algorithm ignores al even numbers (even numbers being non-prime). The first element in the
array represents 3, the second 5, the third 7, and so on.

0001 0000 KEEP KL.14.11

0002 0000 65816 ON

0003 0000

0004 0000 ERATOS START

0005 0000

0006 0000 SIZE GEQU 8192

0007 0000

0008 0000 ITER GEQU $80

0009 0000 COUNT GEQU $82

0010 0000 K GEQU $84

0011 0000 PRIME GEQU $86

0012 0000 FLAGS GEQU $4000

0013 0000

0014 0000 18 CLC enter native mode
0015 0001 FB XCE

0016 0002 C230 REP #3$30 with 16-bit A and X
0017 0004 LONGI ON

0018 0004 LONGA ON

0019 0004

0020 0004

0021 0004  A96400 LDA #100 do one hundred iterations
0022 0007 8580 STA ITER in order to time
0023 0009

0024 0009 6482 AGAIN STZ COUNT zero count (# of primes)
0025 000B

0026 000B AOFF1F LDY #SIZE-1 forl =0tosize
0027 OO0OE A9FFFF LDA HOFFFF

0028 0011 8D0040 STA FLAGS (handle zero case)
0029 0014

0030 0014 990040 LOOP STA FLAGS)Y

0031 0017 88 DEY flaggl] = TRUE
0032 0018 88 DEY

0033 0019 10F9 BPL LOOP

0034 001B

0035 001B A00000 LDY #0 fori =0tosize
0036 O00l1E ; (“i” stored in Y)
0037 O0O0l1E

0038 O0O01E

0039 O001E B9FF3F MAIN LDA FLAGS 1Y if flagq[I] then
0040 0021 101E BPL SKIP minus-one offset: to see
0041 0023 ; high bit in long a mode
0042 0023 98 TYA

0043 0024 OA ASL A prime=1+1+3
0044 0025 1A INC A

0045 0026 1A INC A

0046 0027 1A INC A

0047 0028 8586 STA PRIME

0048 002A

0049 O002A 98 TYA

0050 002B 18 CLC

0051 002C 6586 ADC PRIME k=i+prime
0052 002E

0053 O002E (C90120 TOP CMP #SIZE+1 while k <= size
0054 0031 BOOC BGE SKIP2

0055 0033
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0056 0033 AA TAX flaggk] = FALSE
0057 0034
0058 0034 E220 SEP #$20 clear only
0059 0036 9E0040 STZ FLAGS X one byte
0060 0039 C221 REP #$21 clears carry as well
0061 003B
0062 003B 6586 ADC PRIME k =k + prime
0063 003D 8OEF BRA TOP (end while k <=size)
0064 003F
0065 O003F E682 SKIP2 INC COUNT
0066 0041
0067 0041 C8 SKIP INY (endfori =0tosize)
0068 0042 C00120 CPY #SIZE+1
0069 0045 DOD7Y BNE MAIN
0070 0047
0071 0047 C680 DEC ITER
0072 0049 DOBE BNE AGAIN
0073 004B
0074 004B 38 SEC
0075 004C FB XCE
0076 004D 60 RTS
0077 OO4E
0078 0O04E
0079 0O04E END
Listing 14.11

The program begins by entering the native mode and extending the user registers to sixteen bits. ITER
isinitialized for 100 iterations. An array (starting at FLAGS) of memory of size SIZE is initiaized to $FF's,
two bytes at atime.

The routine proper now begins. Y is initialized with zero, and control falls into the main loop. The
high-order bit of each cell of the array FLAGS istested. Initialy, they are all set, but the algorithm iteratively
clears succeeding non-prime values before they are tested by this code. If the high bit is clear, this number has
already been eliminated by the algorithm; it is non-prime. Notice that the high-order bit of the FLAG[I] (or
FLAGI[Y]) array is desired; however, since the processor is in sixteen-bit mode, the high bit will be loaded from
the memory location at the effective address plus one. To overcome this, the base of the array is specified as the
actual base minus one; this calculation is performed by the assembler during generation of the object code.

If the current value has not been cleared, the algorithm calls for the number which is two times the
current index value plus three (this converts the index to the array values of 3,5, 7. . . ) to be the next value
for PRIME. This prime number is generated quickly by transferring the Y index register into the accumulator,
shifting it left once to multiply by two, and incrementing it three times. Remember, this number is generated
from the current index only if the index value has not aready been eliminated as being non-prime.

This prime number is then added to the current index, and the array elements at this offset, and at all
succeeding indices every PRIME value apart are eliminated from the array as being non-prime. They have the
current prime number as one of their factors. The most significant thing to note here in the code is that only one
byte can be cleared; the accumulator must temporarily be switched into the eight-bit mode to accomplish this.
However, since the next operation is an addition, an optimization is available: both the sixteen-bit mode can be
restored and the carry cleared in asingle REP operation.

The program now loops, checking to see if the next index value has been eliminated; this process
continues until the index reaches the limit of SIZE.

Y ou may be wondering what the result is: at 4 MHz, ten iterations are completed in 1.56 seconds, which
istwice asfast asa4MHz 6502. The January, 1983 BYTE article cites results of 4.0 seconds for a 5SMHz 8088,
1.90 seconds for an 8 MHz 8086, and .49 seconds for an 8 MHz 68000; an 8 MHz 65816 would yield .78
seconds.
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15) Chapter Fifteen

DEGUG16 — A 65816 Programming Tool

This chapter consists of a complete 65816 application example and a detailed discussion of its dozen or
so routines. Where possible, different programming techniques have been employed in an effect to illustrate
some of the different methods of coding that are available.

The program, DEBUG16, is a rudimentary step-and-trace debugger. A debugger is atool used during
software devel opment to isolate and reveal sources of error in the program being tested. In other words, it helps
the programmer eliminate the bugs in a program, hence the name. A step-and-trace function lets the program
be halted after the execution of each single instruction and the registers and possibly other memory locations to
be examined. This effectively provides a“view” into the otherwise invisible internals of the processor.

The ability to trace programs in this manner can be extremely useful: uninitialized variables, wild
branches, infinite loops — al of the common flaws that normally result in your program going away to never-
never land with little clue to their reasons for departure — are made visible. In addition to display the register
contents, a tracer will also list the opcode mnemonic and display the operand using the same syntax as
originaly specified in the source program. This process is called disassembly. Although the tracing program
can accurately regenerate an approximation of the source line that resulted in a given instruction, it cannot
determine any of the symbolic labels that might have been given to the address found by the tracer in the
assembler source program. More sophisticated debuggers called symbolic debuggers let you load a program’s
symbol table created by either the link editor or assembler; the debugger’s disassembly routine looks up each
address in a disassembly in the symbol table and insert labels in place of addresses wherever a correspondence
is found.

DEBUG16 dso hasaLIST entry point, at which its disassembler can be used apart from its tracer; this
lets you re-create a listing of a program without having the source code available. Again, there is no symbolic
information (labels) available. Additionaly, the disassembler in its current form does not deal with variable
lengths of immediate operands when in the LIST mode.

The tracer can display the dissembled instruction and register values either one instruction at a time, or
allow the trace to execute in free-running mode. When only one instruction is disassembled at atime, the tracer
is said to be single-stepping; pressing a key lets the next instruction be executed. Pressing RETURN toggles
the tracer into free-running mode. While free-running, a single key press will pause the trace. Pressing any key
except RETURN resumes tracing ; RETURN switches back to single-stepping.

The basic theory of operation of the tracer is smple. Starting with the first program instruction, the
tracer calculates the length of the instruction by first determining the addressing mode associated with the
opcode, and then referring to atable that gives the instruction lengths for the different addressing modes. It can
therefore determine the location of the next instruction that follows the current one. It places a BRK instruction
at that location, having first saved the original value stored there. Next, it executes (viaa JMP instruction) the
current instruction.  As soon as that instruction completes, the program counter increments to the next
instruction, where it encounters the insert BRK. BRK initiates an interrupt cycle that returns control back to
the tracer, saves copies of all of the processor’s register contents to memory, then calls a routine which displays
them, along with the disassembled instruction.

When the next step (next instruction) is to be executed, the BRK instruction is replaced with its origina
value, and the cycle is repeated. In this way the program is able to gain control of the processor “in between”
the execution of each instruction.

The exception to this method is whenever an instruction (such as a branch or jump) is encountered
which can change the flow of control; in these cases, the target location must be determined (by examining the
operand of the instruction), and a BRK inserted at that location instead.

The disassembly output looks like Figure 15.1.
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00:2000 4CCB22 JMP $22CB

00:2003 08 PHP

00:2004 18 CLC

00:2005 FB XCE

00:2006 08 PHP

00:2007 08 PHD

00:2008  F40003 PEA $0300
00:200B 2B PLD

00:200C C220 REP #$20
00:200E  E210 SEP #$10

Figure 15-1 Disassembly Output

And the tracer output looks like Figure 15.2.

00:5000 A905 LDA #305

A=1505 X=0011 Y=0013 SS01AA D=0000 B=00 P=7D E:1
00:5002 AB TAY

A=1505 X=0011 Y=0005 SS01AA D=0000 B=00 P=7D E: 1
00:5003 90060 STA $600,Y

A=1505 X=0011 Y=0005 SS01AA D=0000 B=00 P=7D E: 1
00:5006 88 DEY

A=1505 X=0011 Y=0004 SS01AA D=0000 B=00 P=7D E1
00:5007 DOFA BNE $5003

A=1505 X=0011 Y=0004 SS01AA D=0000 B=00 P=7D E:1
00:5003 990060 STA $600,Y

A=1505 X=0011 Y=0004 SS01AA D=0000 B=00 P=7D E:1
00:5006 88 DEY $5003

A=1505 X=0011 Y=0003 SS01AA D=0000 B=00 P=7D E:1
00:5007 DOFA BNE $6000,Y

A=1505 X=0011 Y=0003 SS01AA D=0000 B=00 P=7D E:1
00:5003 990060 STA

A=1505 X=0011 Y=0003 SS01AA D=0000 B=00 P=7D E:1
00:5006 88 DEY

A=1505 X=0011Y=0002 S=01AA D=0000B=00 P=7D E: 1

Figure 15-2 Tracer Output

This example was developed and tested using an Applelle with a 65816 processor card installed; the
calls to machine-dependent locations have been isolated and are clearly as such. DEBUG16 uses the native
BRK vector. On the Applell, this location ($FFE6, FFE7) normally contains ROM data, which varies between
monitor ROM versions. Since there is no way to patch ROM, the solution opted for here is for DEBUG16 to
try to patch the location pointed to by the data that is stored there. For current ROMs, these are RAM locations
that happen to be more or less livable. Check the location pointed to by your ROMs, and make sure that neither
your own code nor the debugger are loaded into that area. DEBUG16 will automatically read whatever value is
stored there and store a vector to that address to regain control after aBRK.

Both programs are executed by putting the starting address of the routine to list or trace (which has been
loaded into memory) at DPAGE+80.82 ($380.82) in low — high — bank order, and then calling either the
TRACE entry point at $2000, or the LIST entry at $2003.
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Declarations

The listing begins with the declaration of global values by way of GEQU statements. Almost al of
these are addresses of direct page memory locations that will be used; one notable exception is the label
DPAGE, a sixteen-bit value that defines the beginning of the direct page memory to be used by this program.
Because a 65816 debugger is by definition a 6502 debugger, it is wise to relocate the direct page out of the
default zero page, since it will be used by 65802 programs, and you program being debugged. In the listing, a
value of $300 is used; on an Applel |, this relocates the direct page to page three, which is a convenient page to
use.

Many of the direct page locations are used to store the register contents of the user program when the
debugger is executing. All of the registers are represented. Asyou will seein the code, the adjacent positioning
of some of the registers is important and must be maintained.

In addition to the direct page location used for register storage, one general-purpose temporary variable
is used, cadled TEMP. Three other variables — ADDRMODE, MNX, and OPLEN (for address mode,
mnemonic index, and operation length, respectively) — are used primarily to access the tables used in
disassembling an instruction.

The variable CODE contains the instruction opcode currently being executed in the user program. The
variable NCODE contains the next instruction opcode to be executed, saved there before being replaced with
the BRK instruction inserted in the code. OPRNDL, OPRNDH, and OPRNDB contain the three (possible)
values of the operand of a given instruction.

0001 0000

0002 0000 KEEP DEBUG16

0003 0000

0004 0000 65816 ON

0005 0000 MSB ON

0006 0000 LONGA OFF

0007 0000 LONGI OFF

0008 0000

0009 OOOO khkkkhkkhkhkkhhhkkhhhkkhhhhhhkdhhhhhdhhdhhdhhdhhdhxdhxxdxx

0010 0000 * *

0011 0000 * DEBUG16 *

0012 0000 * A 65816 DEBUGGER *

0013 0000 * *

0014 0000 * *

0015 OOOO khkkkkhkkhkhkkhhhkkhhhkkhhhhhhkdhhkdhhdhhdhhdhhkdhddhxdhxxdxx

0016 0000

0017 0000 ORG $8000

0018 0000

0019 0000 MAIN START

0020 0000

0021 0000 USING MN

0022 0000 USING ATRIBL

0023 0000

0024 0000

0025 0000 DPAGE GEQU $300 LOCATION OF THISAPPLICATION'S
0026 0000 ; DIRECT PAGE

0027 0000

0028 0000 ; DIRECT PAGE STORAGE

0029 0000 ; TRACE REGISTERS

0030 0000 ;

0031 0000

0032 0000 PCREG GEQU $80 PROGRAM COUNTER
0033 0000 PCREGH GEQU PCREG+1

0034 0000 PCREGB GEQU PCREGH+1 INCLUDING BANK
0035 0000

0036 0000 NCODE GEQU PCREGB+1 NEXT CODE TO BE TRACED
0037 0000

0038 0000 OPCREG GEQU NCODE+1 OLD PROGRAM COUNTER VALUE
0039 0000 OPCREGH GEQU OPCREG+1

0040 0000 OPCREGB GEQU OPCREGH+1
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0041 0000
0042 0000 CODE
0043 0000

0044 0000 OPRNDL
0045 0000 OPRNDH
0046 0000 OPRNDB
0047 0000

0048 0000

0049 0000 XREG
0050 0000 XREGH
0051 0000

0052 0000 YREG
0053 0000 YREGH
0054 0000

0055 0000 AREG
0056 0000 AREGH
0057 0000

0058 0000 STACK
0059 0000 STACKH
0060 0000

0061 0000

0062 0000 DIRREG
0063 0000 DIRREGH
0064 0000

0065 0000 DBREG
0066 0000

0067 0000 PREG
0068 0000

0069 0000 EBIT
0070 0000

0071 0000 TEMP
0072 0000 TEMPH
0073 0000 TEMPB
0074 0000

0075 0000

0076 0000 ADDRMODE
0077 0000

0078 0000 MNX
0079 0000 :

0080 0000

0081 0000 OPLEN
0082 0000 :

0083 0000

0084 0000 CR
0085 0000

0086 0000

0087 0000 M

0088 0000 X

0089 0000 C

0090 0000

0091 0000

0092 0000

0093 0000 gcoos

GEQU
GEQU

GEQU
GEQU

GEQU
GEQU

GEQU
GEQU

GEQU
GEQU

GEQU
GEQU
GEQU
GEQU
GEQU
GEQU
GEQU
GEQU
GEQU
GEQU
GEQU

GEQU

GEQU

GEQU

GEQU
GEQU
GEQU

JMP

OPCREGB+1
CODE+1

OPRNDL+1
OPRNDH+1

OPRNDB+1
XREG+1

XREGH+1
YREG+1

YREGH+1
AREG+1

AREGH+1
STACK+1
STACKH+1
DIRREG+1
DIRREGH+1
DBREG+1
PREG+1
EBIT+2
TEMP+1
TEMPH+1

TEMPB+1

ADDRMODE+1

MNX+2

$8D

$20
$10
$01

TRACE

CURRENT CODE TO BE TRACED

OPERANDS OF CURRENT
INSTRUCTION

X REGISTER

Y REGISTER

ACCUMULATOR

STACK POINTER

DIRECT PAGE REGISTER

DATA BANK REGISTER
P STATUS REGISTER
EBIT

TEMPORARY

ADDRESS MODE OF CURRENT OPCODE

MNEMONIC INDEX
FROM ATTRIBUTE TABLE

LENGTH OF OPERATION,
INCLUDING INSTRUCTION

CARRIAGE RETURN

SYBOLIC NAMES FOR
STATUS REGISTER BITS
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LIST

The program has two entry points, defined in the first routine. One is for listing (disassembling) a
program, the other for tracing. The first entry point, at the program’s origin (default $8000), is jump to the
actua entry point of the trace routine; the second, immediately past it (at $8003), is the beginning of the code
for the disassembler.

Since this is a bare-bone disassembler, intended to be expanded and perhaps integrated with a general
purpose machine language monitor, parameters such as the start address of the program to be traced are entered
by modifying the values of the register variables; for example, to begin disassembly of a program stored at
$800, the values $00 $08, and $00 are stored staring at PCREG. Since the direct page is relocated to page
three, the absolute location of this variable is $380.

Starting at the L1ST entry, some basic initialization is performed: saving the status register, switching
to native mode, and then saving the previous operating mode (emulation/native) by pushing the status register a
second time (the carry flag now containing the previous contents of the e bit). Thus this program may be called
from either native or emulation mode.

The current value of the direct page is saved in program memory, and then the new value — DPAGE —
is stored to the direct page register. The native mode is entered.

Control now continues at TOP, the beginning of the main loop of the disassembler. The mode is set to
long accumulator, short index. This combination alows ssmple manipulation of both byte and double-byte
values. Thevaue of PCREG is copied to OPCREG (old pcreg). OPCREG will contain the starting location
of the current instruction throughout the loop; PCREG will be modified to point to the next instruction.
However, it hasn't been modified yet, so it is used to load the accumulator with the opcode byte. Indirect long
addressing is used, so code anywhere within the sixteen-megabyte address space may be disassembled. Since
the accumulator is sixteen bits, a second byte is fetched as well, but ignored; the next instruction transfers the
opcode to the X register and then storesiit at the location CODE.

The utility routine UPDATE is called next. This is common to both the disassembler and the tracer,
and determines the attributes of this instruction by looking the instruction up in a table; it a'so increments the
program counter to point to the next instruction.

The routines FLIST, FRMOPRND, and PRINTLN form the disassembled line and display it. After
each line is printed, the routine PAUSE is called to check the keyboard to see if a key has been pressed,
signalling a pause. If PAUSE returns with the carry clear, it means the user has signalled to quit, and control
falls through to QUIT; otherwise, the program loops to TOP again, where it repeats the process for the next
instruction.
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0094 0003
0095 0003
0096 0003
0097 0003
0098 0003
0099 0003
0100 0003
0101 0003
0102 0003
0103 0003
0104 0003
0105 0003
0106 0004
0107 0005
0108 0006
0109 0007
0110 0007
0111 0008
0112  000B
0113 000C
0114 000C
0115 000C
0116  000C
0117 0OO0CE
0118 0010
0119 0010
0120 0010
0121 0010
0122 0012
0123 0014
0124 0016
0125 0018
0126  001A
0127 001C
0128 001D
0129 001F
0130 001F
0131 0022
0132 0022
0133 0025
0134 0028
0135 002B
0136 002D
0137 0030
0138 0030
0139 0032
0140 0032
0141 0033
0142 0034
0143 0035
0144 0036
0145 0037
0146 0037
Loca Symbols
LIST

08
18

08

0B
F40003
2B

C220
E210

649D
AS580
8584
AG82
8686
A780
AA

8687

200080

200080
200080
200080
9005

200080

80DA

2B
28
FB
28
60

00003

TOP

QUIT

QUIT

LIST

MAIN LOOP OF DISASSEMBLER FUNCTION

ENTRY
PHP
cLC
XCE
PHP

PHD

PLD

ANOP

REP
SEP
LONGA
LONGI

STZ
LDA
STA
LDX
STX
LDA
TAX
STX

JSR

JSR
JSR
JSR
BCC
JSR

BRA

PLD
PLP
XCE
PLP
RTS
END

000032

DPAGE

#M
#X
ON
OFF

MNX
PCREG
OPCREG
PCREGB
OPCREGB
[PCREG]

CODE
UPDATE
FLIST
FRMOPRNND
PAUSE

QUIT
PRINTLN

TOP

TOP

SAVE ORIGINAL FLAGS

SET NATIVE MODE
SAVE PREVIOUS MODE

SAVE CURRENT DP

SET TO NEW DP

CLEAR MNEMONIC INDEX
MOVE PROGRAM COUNTER

TO ‘OLD PROGRAM COUNTER’

INCLUDING BANK
GET NEXT INSTRUCTION
SAVE AS'CODFE
UPDATE ATTRIBUTE VARIABLES
FORM OBJECT CODE, MNEMONIC
FORM OPERAND FIELD
CHECK FOR USER PAUSE
PRINT IT
LOOPTIL END

RESTORE ENVIRONMET,
RETURN TO CALLER

0000C
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FLIST

FLIST is caled by both the disassembler and the tracer. This routine displays the current program
counter value, the object code of the instruction being disassembled in hexadecimal, and the mnemonic for the
opcode. The code required to do this is basically the same for any instruction, the only difference being the
length of the instruction, which has aready been determined by UPDATE.

The first thing the code does is to blank the output buffer by calling CLRLN. Particularly since 6502
emulation-maode |/O routines are used, it is more efficient to build an output line first, then display it all at once,
rather than output the line “on the fly.” Characters are stored in the output buffer LINE via indexed absolute
addressing; the Y register contains a pointer to the current character position within the line, and is incremented
every time a character is stored. Since character manipulation is the primary activity in this routine, the
accumulator is set to eight bits for most of the routine.

The flow of the program proceeds to generate the line from left to right, as it is printed; the first
characters stored are therefore the current program counter values. Since UPDATE has already modified the
program counter variable to load the operands of the instruction, the value in the variable OPCREG is used.
The hex conversion routine, PUTHEX, converts the data in the accumulator into the ASCII characters that
represents the number’s two hexadecimal digits, storing each character at the location pointed to by LINE,Y,
and then incrementing Y to point to the next character. A colon is printed between the bank byte and the
sixteen-bit program counter display to aid readability.

Next, some spaces are skipped by loading the Y register with a higher value, and the object code bytes
are displayed in hexadecimal. These values have already been stored in direct page memory locations CODE
and OPRNDL, OPRNDH, and OPNDB by the UPDATE routine, which also determined the length of the
instruction and stored it at OPLEN, The length of the operand controls aloop that outputs the bytes; note that a
negative displacement of one is calculated by the assembler so that the loop is not executed when OPLEN is
equal to one.

All that remains is to print the instruction mnemonic. The characters for al of the mnemonics are
stored in atable called M N; at three characters per mnemonic (which as you may have noticed is the standard
length for all 65x mnemonics), the mnemonic index (MNX) determined by UPDATE from the instruction
attribute table must be multiplied by three. This is done by shifting left once (to multiply by two), and adding
the result to the original value of MNX. Note that this type of “custom” multiplication routine is much more
efficient than the generalized multiplication routines described in the previous chapter. The characters in the
mnemonic table are copied into the output line using the MVN instruction; the result just calculated is
transferred into the X register as the source of the move. It is the line-buffered output that allows use of the
block-move instruction; on-the-fly output would have required each character to be copied out of the mnemonic
tablein aloop.
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0147 ;

0148 ; FLIST — FORM IMAGE OF PROGRAM COUNTER,

0149 ; OBJECT CODE, AND MNEMONIC IN ‘LINE’

0150 ;

0151 ; REQUIRES ATTRIBUTE VARIABLES TO BE PREVIOUSLY INITIALIZED
0152 P P PP
0153 ;

0154

0155 FLIST  START

0156 USING MN

0157

0158 200080 JSR CLRLN BLANK ‘LINE' VARIABLE

0159 0003

0160 0003 E230 SEP #M+X SHORT REGISTERS

0161 0005 LONGA OFF

0162 0005 LONGI OFF

0163 0005

0164 0005 AO000 LDY #0

0165 0007 A586 LDA OPCREGB GET BANK BYTE, FORM AS HEX
0166 0009 200080 JSR PUTHEX STRING

0167 000C A9BA LDA # BANK DELIMITER

0168 000E 990080 STA LINEY

0169 0011 C8 INY

0170 0012 A585 LDA OPCREGH GET BYTES OF PROGRAM COUNTER
0171 0014 200080 JSR PUTHEX FORM ASHEX STRING IN
0172 0017 A584 LDA OPCREG LINE

0173 0019 200080 JSR PUTHEX

0174 001C

0175 001C AO0A LDY #10

0176 001E A587 LDA CODE STORE OPCODE AS HEX STRING
0177 0020 20080 JSR PUTHEX

0178 0023 A201 LDX #1

0179 0025

0180 0025 EA49F MORE CPX OPLEN LIST OPERANDS, IF ANY

0181 0027 FOO8 BEQ DONE

0182 0029 B587 LDA OPRNDL-1,X

0183 002B 200080 JSR PUTHEX

0184 O002E E8 INX

0185 002F 80F4 BRA MORE

0186 0031

0187 0031 C23 DONE REP #M+X

0188 0033 LONGA ON

0189 0033 LONGI ON

0190 0033

0191 0033 A59D LDA MNX GET MNEMONIC INDEX,

0192 0035 OA ASL A MULTIPLY BY THREE

0193 0036 18 CLC (TIMESTWO PLUS SELF)

0194 0037 659D ADC MNX

0195 0039 18 CLC

0196 003A 690080 ADC #MN

0197 003D AA TAX INDEX INTO MNEMONIC TABLE
0198 O003E A01480 LDY #LINE+20 COPY INTO ‘LINE’

0199 0041 A90200 LDA #2

0200 0044 MOVE ENTRY

0201 0044 540000 MVN 0,0

0202 0047

0203 0047 60 RTS

0204 0048 END

Loca Symbols

DONE 000031 MORE 000025 MOVE 000044
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FRMOPRND

Thisis the second part of the line-disassembly pair. It performs the address-mode specific generation of
the disassembled operand field; the result is similar to the address mode specification syntax of a line of 65x
source code.

TheY register isloaded with the starting destination in LINE, and the attribute stored at ADDRM ODE
is multiplied by two to form an index into a jump table. There is a separate routine for each addressing mode;
the address of that routine is stored in a table called MODES in the order that corresponds to the attributes
given them from the attribute table.

The IMP indirect indexed instruction is used to transfer control through the jump table MODES to the
appropriate routine, whose index, times two, has been loaded into the X register.

Each of the routines is basically similar; they output any special characters and print the address of the
operand found in the instruction stream. There are three relative routines, POB, PODB, and POTB (for put
operand byte, put operand double byte, and put operand triple byte) which output direct page, absolute, and
absolute long addresses.

The two routines FPCR and FPCRL, which handle the program counter relative instructions, however,
must first calculate the destination address (which is how an assembler would specify the operand, so this is
how they are disassembled) by adding the actual operand, a displacement, to the current program counter. The
operand of a short program counter relative instruction is sign-extended before adding, resulting in a sixteen-bit
signed displacement which is added to the program counter to find the destination address.
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0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223

0224

0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266

0010
0011
0013
0015
0017
001A
001D
001D
001D
0020
0020
0020
0023
0023
0023
0026
0026
0026
0028
002B
002C
002C
002C
002D
002D
002D
0030
0030
0030
0030
0032
0035
0038
003B

E230

A01C

A59C

0A
AA
7C0080

A9A3
990080
C8
AS9F
Co02
FO03
4C0080
4C0080

4C0080

4C0080

4C0080

A9C1
990080
60

60

20B600

A9AC
990080
C8
A9D9
990080

FRMOPRND ——

FORMS OPERAND FIELD OF DISASSEMBLED INSTRUCTION

OPLEN, ADDRMODE, AND OPRND MUST HAVE BEEN
INITIALIZED BY ‘UPDATE

FRMOPRND  START

FIMM

USING

LONGA
LONGI

LDY

LDA

ASL
TAX
JMP

ENTRY
LDA
STA
INY
LDA
CMP
BEQ
IMP

GOSHORT JMP

FABS

FABSL

FDIR

FACC

FIMP

FINDINX

FINY

ENTRY
JMP

ENTRY
JMP

ENTRY
JMP

ENTRY
LDA
STA
RTS

ENTRY
RTS

ENTRY
JSR

ENRTY
LDA
STA
INY
LDA
STA

MODES
HM+X
OFF
OFF

#28
ADDRMOD
E

A

(MODESX)

#H#
LINE)Y
OPLEN

#2
GOSHORT

PODB
POB

PODB

POTB

#A
LINE)Y

FIND

LINE)Y

#Y’
LINE,)Y

OFF SET INTO ‘LINE' FOR OPERAND
TO BEGIN

GET ADDRESS MODE, MULTIPLY BY

TWO, JUMP THROUGHT ADDRESS
MODE JUMP TABLE TO PROPER
HANDLER

IMMEDIATE MODE —-—

OUTPUT POUND SIGN,
ONE OR TWO
OPERAND BYTES, DEPENDING
ON OPLEN

ABSOLUTE MODE ——
JUST OUTPUT A DOUBLEBYTE

ABSOLUTEW LONG ——
OUTPUT A TRIPLEBYTE

DIRECT MODE --
OUTPUT A SINGLE BYTE

ACCUMULATOR —-—
JUST AN A

IMPLIED ——
NO OPERAND

INDIRECT INDEXED ——
CALL ‘INDIRECT’, THEN FALL
THROUGH TO INDEXED BY Y

INDEXED BY Y MODES --
TACK ON A ‘COMMAY’
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0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331

003B
003C
003C
003C
003F
0042
0042
0042
0044
0047
0048
004B
004E
0050
0053
0054
0054
0054
0057
005A
005A
005A
005D
0060
0060
0060
0062
0065
0066
0068
006B
006C
006D
006D
006D
0070
0073
0073
0073
0076
0079
0079
0079
007C
007F
007F
007F
0081
0082
0084
0086
0086
0088
008B
008D
008E
008F
0091
0091
0093
0093
0093
0096
0096
0096

60

20C600
4C3000

A9A8
990080
C8
200080
206000
A9A9
990080
60

200080
4C6000

200080
4C3000

A9AC
990080
C8
A9D8
990080
C8

60

200080
4C6000

200080
4C6000

200080
4C3000

A9FF
EB

A588
C221

3003
297F00
6584
1A

1A
8588

E220

4C0080

FINDINXL

FINXIND

FDIRINXX

FDIRINXY

FINX

FABSX

FABSLX

FABSY

FPCR

OK

FCPRL

RTS

ENTRY
JSR
JMP

ENTRY
LDA
STA
INY
JSR
JSR
LDA
STA
RTS

ENTRY
JSR
JMP

ENTRY
JSR
JMP

ENTRY
LDA
STA
INY
LDA
STA
INY
RTS

ENTRY
JSR
JMP

ENTRY
JSR
JMP

ENTRY
JSR
JMP

ENTRY
LDA
XBA
LDA
REP
LONGA
BMI
AND
ADC
INC
INC
STA

SEP
LONGA

JMP

ENTRY

FINDL
FINY

#(
LINE)Y

POB
FINX
#1)!
LINE)Y

POB
FINX

POB
FINY

LINE)Y

#X
LINE)Y

PODB
FINX

POTB
FINX

PODB
FINY

HOFF

OPRNDL
#M+C
ON

OK

#STF
OPCREG

OPRNDL

#M
OFF

PODB

INDIRECT INDEXED LONG ——
CALL ‘INDIRECT LONG’, THEN
EXIT THROUGH INDEXED BY Y

INDEX INDIRECT ——
PARENTHESIS

A SINGLEBYTE —-
COMMA, X
CLOSE.

DIRECT INDEXED BY X ——
OUTPUT A BYTE,
TACK ON COMMA, X

DIRECT INDEXEDBY Y ——
OUTPUT A BYTE,
TACK ON COMMA, Y

INDEXED BY X ——
TACK ON A
COMMA, X

(USED BY SEVERAL
MODES)

ABSOLUTE INDEXED BY X ——
OUTPUT A DOUBLE BYTE,
TACK ON A COMMA, X

ABSOLUTELONGBY X ——

OUTPUT A TRIPLE BYTE,
TACK ON COMMA, X

ABSOLUTEY —-—

OUTPUT A DOUBLE BYTE,
TACK ON COMMA)Y

PROGRAM COUNTER RELATIVE ——
SIGN EXTEND OPERAND

ADD TO PROGRAM COUNTER
ADD TWO, WITHOUT CARRY

STORE AS NEW ‘OPERAND’

NOW JUST DISPLAY A DOUBLEBYTE

PROGRAM COUNTER RELATIVE LONG
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0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374

0375

0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395

0096

0098

0098

0098

009A
009C
009D
00AO
00A2
00A2
00A4
00A4
00A4
00A7
00A7
00A7
00A9
00AC
00AD
00BO
00B2
00B5
00B6
00B6
00B6
00B8
00BB
00BC
00BF
00C1
00C4
00C5
00C6
00C6
00C6
00C8
00CB
ooccC
00CF
00D1
00D4
00D5
00D6

00D6

00D6
00D8
00DB
00DC
OODF
0OE1

O0OE4
00E5
00E5
00E5
00E6
00E6
00E6
00E9

0OEB
0OEE
OOEF
00F1

00F4

00F5

c221

AS588
6584
18
690300
8588

E220

4C0080

A9A8
990080
C8
200080
A9A9
990080
60

A9A8
990080
C8
200080
A9A9
990080
C8

60

A9DB
990080
C8
200080
A9DD
990080
C8

60

A9A8
990080
C8
206D00
A9A9
990080
60

60

202300
A9AC
990080
C8
A9D3
990080
C8

60

FABSIND

FIND

FINDL

FABSINXIN
D

FSTACK

FSTACKREL

REP
LONGA

LDA
ADC
CLC
ADC
STA

SEP
LONGA

JMP

ENTRY
LDA
STA
INY
JSR
LDA
STA
RTS

ENTRY
LDA
STA
INY
JSR
LDA
STA
INY
RTS

ENTRY
LDA
STA
INY
JSR
LDA
STA
INY
RTS

ENTRY

LDA
ST5A
INY
JSR
LDA
STA
RTS

ENTRY
RTS

ENTRY
JSR
LDA
STA
INY
LDA
STA
INY
RTS

#M+C
ON

OPRNDL
OPCREG

#3
OPRNDL

#M
OFF

PODB

#(
LINE)Y

PODB
#Y
LINE)Y

#(
LINE)Y

POB
#Y
LINE)Y

#[
LINE)Y

POB
# ]
LINE)Y

#(
LINE)Y
FABSX
#Y
LINE)Y

#S
LINE)Y

JUST ADD THE OPERAND
BUMPBY THREE, PAST INSTRCTION

STORE AS NEW ‘OPERAND’

PRINT A DOUBLE BYTE

ABSOLUTE INDIRECT
SURROUND A DOUBLE BYTE
WITH PARENTHESES

INDIRECT ——
SURROUND A SINGLEBYTE
WITH PARENTESES

INDIRECT LONG ——
SURROUND A SINGLEBYTE
WITH SQUARE BRACKTS

ABSOLUTE INDIRECT INDEXED

SURROUND A CALL TO *ABSOLUTE
INDEXED’ WITH PARENTESES

STACK —— IMPLIED

STACK RELATIVE

JUST LIKE

DIRECT INDEXED, BUT WITH
AN'S
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0396 00F6
0397 0O0F6
0398 00F6
0399 O0O0F6
0400 OOF8
0401 OOFB
0402 0OOFC
0403  OOFF
0404 0101
0405 0104
0406 0105
0407 0108
0408 0108
0409 0108
0410 0108
0411 0108
0412 010A
0413 010C
0414 010D
0415 010F
0416 0111
0417 0111
0418 0114
0419 0116
0420 0119
0421 011A
0422 011B
0423 011D
0424 0120
0425 0120
0426 0120
Loca Symbols
FABS
FABSLX
FBLOCK
FIMM
FINDINXL
FINY

FSTACK

A9A8
990080
C8
20E600
A9A9
990080
C8
4C3000

C220
AS588
EB

8588
E220

200080
A9AC
990080
C8

EB
8588
4C0080

00001D
000073
000108
00000B
00003C
000030
0000E5

FSRINDINX

FBLOCK
FABSIND 0000A7
FABSX 00006D
FDIR 000023
FIMP 00002C
FINDL 0000C6
FPCR 00007F
FSTACKREL  0OO000E6

ENTRY
LDA
STA
INY
JSR
LDA
STA
INY
JMP

ENTRY

REP
LDA
XBA
STA
SEP

JSR

LDA
STA
INY

XBA
STA
JMP

END

#(

LINE)Y
FSTACKREL
#Y

LINE)Y

FINY

#M
OPRNDL

OPRNDL
#M

POB
LI,N EY

OPRNDL
POB

FABSINXIND 0000D6

FABSY

000079

FDIRINXX 000054

FIND
FINX
FPCRL

000086
000060
000096

GOSHORT 00001A

STACK RELATIVE INDIRECT INDEX

SURROUND STACK RELATIVEWITH

PARENTHESES, THEN

TACK ON A COMMA)Y

BLOCK MOVE

MAKE HUMAN-READABLE:
SWAP SOURCE, DEST

OUTPUT THE SOURCE
THEN COMMA

SWAP DEST INTO OPRNDL
THEN PRINT ONEBYTE

FABBSL 000020
FACC 000026
FDIRINXY 00005A
FINDINX 00002D
FINXIND 000042
FSRINDINX 0000F6
OK 00008B
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POB

This routine (put operand byte), with three entry points, outputs a dollar sign, followed by either one,
two, or three operand bytes in hexadecimal form; it calls the routine PUTHEX to output the operand bytes. Itis
called by FRMOPRND.

Depending on the entry point, the X register is loaded with O, 1, or 2, controlling the number of times
the loop a& MORE is executed; on each iteration of the loop, an operand byte is loaded by indexing into
OPRNDL and then printed by PUTHEX.

0427 0000

0428 0000 e
0429 0000 ;

0430 0000 ; POB, PODB, POTB

0431 0000 ; PUT OPERAND (DOUBLE, TRIPLE) BYTE

0432 0000 ;

0433 0000 ; PUTSOPRNDL (OPRNDH, OPRNDB) IN LINE ASHEX VALUE
0434 0000 ;. WITH ‘$ PREFIX

0435 0000 ;

0436 0000 ; ASSUMES SHORT ACCUMULATOR AND INSEX REGISTERS
0437 0000 ; (CALLED BY FOPRND)

0438 0000 e
0439 0000 ;

0440 0000

0441 0000

0442 0000

0443 0000 POB START

0444 0000 LONGA OFF

0445 0000 LONGI OFF

0446 0000

0447 0000 ; PRINT:

0448 0000 AZ200 LDX #0 ONE OPERAND BYTE

0449 0002 8006 BRA IN SKIP

0450 0004 PODB ENTRY

0451 0004 A201 LDX #1 TWO OPERAND BYTES
0452 0006 8002 BRA IN SKIP

0453 0008 POTB ENTRY

0454 0008 AZ202 LDX #2 THREE OPERAND BYTES
0455  000A ; FALL THROUGH

0456 000A A9A4 IN LDA #$ PRINT LEAD-IN

0457 000C 990080 STA LINEY

0458 O00OF C8 INY

0459 0010

0460 0010 B588 MORE LDA OPRNDL,X LOOP THROUGH OPERAND
0461 0012 200080 JSR PUTHEX HIGH TO LOW

0462 0015 CA DEX

0463 0016 10F8 BPL MORE

0464 0018 60 RTS

0465 0019 END

Loca Symbols

IN 00000A MORE 000010 PODB 000004 POTB 000008
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STEP

This routine aso contains the PAUSE entry point called by LIST; STEP waits until a keypress,
PAUSE simply checks to see if a key has been pressed, and waits only if there has been an initial keypress. In

both cases, the wait loop continues until the next keypress.

If the keypress that exits the wait loop was the

ESCAPE key, the carry is cleared, signalling the calling program that the user wants to quit rather than
continue. If it was RETURN, the overflow flag is cleared; the tracer uses this toggle between tracing and single
stepping. Any other keypress causes the routine to return with both flags set.
The code in this listing is machine-dependent; it checks the keyboard locations of the Applell. Since
thisis arelatively trivial task, in-line code is used rather than a call to one of the existing 6502 monitor routines,
therefore, the processor remains in the native mode while it performs this 1/O operation.
Likeall utility routines, ST EP saves and restores the status on entry and exit.

0466
0467
0468
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497

0498
0499
0500
0501
0502
0503
0504

0505

0010
0010
0013
0015
0018

001A

08
E230
800B

08
E230
ADOQO0CO

101B
8D10C0

ADOQO0CO
10FB
8D10C0
C998

D004

APPEND DB. UTILITY

: STEP- - CHECKS FOR USER PAUSE SIGNAL
: (KEYSTROKE)

; CONTAINS MACHINE-DEPENDENT CODE
; FORAPPLE |

1

1

STEP
KEYBD
KEYYSTB
ESC

\Y

PAUSE

WAIT

START
EQU
EQU
EQU
EQU
LONGA
LONGI

PHP
SEP
BRA

ENTRY
PHP
SEP
LDA

BPL
STA

LDA
BPL
STA
CMP

BNE

$C000
$C010
$9B
$40
OFF
OFF

#M+X
WAIT

#M+X
KEYBD

RETNCR
KEYSTB

KEYBD
WAIT
KEYSTB
#ESC

RETNESC

ESCAPE KEY (HIGH BIT SET)
MASK FOR OVERFLOW FLAG

SAVE MODES

ENTRY FOR ‘PAUSE’ CALL

CHECK FOR KEY PRESS

NONE; DON'T PAUSE
CLEAR STROBE

IF KEYSTROKE
LOOP FOR NEXT KEY

CLEAR STROBE
IF ESC RETURN WITH
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0506 001C
0507 001C 28

0508 001D EA
0509 O001E 18
0510 O001F 60
0511 0020

0512 0020 C98D
0513 0022 D004
0514 0024 28
0515 0025 E241
0516 0027 60
0517 0028

0518 0028 8D10CO
0519 002B 28
0520 002C 38
0521 002D B8
0522 002E 60
0523 002F

Loca Symbols
ESC 00009B

RETEQ 00001C
WAIT 000010

RETEQ

RETNESC

RETNCR

KEYBD
RETNCR

PLP

NOP
CLC
RTS

CMP #CR
BNE RETNCR
PLP

SEP #C+V
RTS

STA KEYSTB
PLP

SEC

CLV

RTS

END

00C000 KEYSTB
000028 RETNESC

CARRY CLEAR (QUIT)

ELSE SET

(CONTINUE)

00C010 PAUSE
000020 \Y

000005
000040
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PUTHEX

This utility routine, already referred to in several descriptions, is called whenever a hexa